Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4419-4429.DOI: 10.16085/j.issn.1000-6613.2024-1623
• Reactors and process equipment modeling and simulation • Previous Articles
ZHU Xiaozhong(
), FANG Wei, ZHAO Yi(
)
Received:2024-10-10
Revised:2024-11-26
Online:2025-09-08
Published:2025-08-25
Contact:
ZHAO Yi
通讯作者:
赵毅
作者简介:朱孝忠(1999—),男,硕士研究生,研究方向为炼化装置机器学习的应用。E-mail:18811209930@163.com。
CLC Number:
ZHU Xiaozhong, FANG Wei, ZHAO Yi. Application of deep VGG model-based prediction in ethylene cracker plant[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4419-4429.
朱孝忠, 房韡, 赵毅. 基于深度VGG模型在乙烯裂解炉装置的预测应用[J]. 化工进展, 2025, 44(8): 4419-4429.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1623
| 变量 | 种类 | 数量 | 名称 |
|---|---|---|---|
| 输入变量 | 石脑油原料变量 | 6 | 正构烷烃质量分数,%;异构烷烃质量分数,%;环烷烃质量分数,%;芳烃质量分数,%;蒸馏曲线,℃;密度,kg/m3 |
| 操作与状态变量 | 12 | 石脑油总进料量,kg/h;一次稀释蒸汽流量,kg/h;稀释比;裂解气进稀释蒸汽混合器温度,℃;二次稀释蒸汽流量,kg/h;横跨段压力,kPa;横跨段温度,℃;总平均裂解炉出口温度(COT),℃;线性急冷换热器出口温度,℃;急冷油流量,t/h;裂解气出急冷油混合器温度,℃;裂解炉出口压力(COP),kPa | |
| 目标变量 | 产品收率 | 6 | H2摩尔分数,%;CH4摩尔分数,%;C2H4摩尔分数,%;C2H6摩尔分数,%;C3H6摩尔分数,%;C3H8摩尔分数,% |
| 变量 | 种类 | 数量 | 名称 |
|---|---|---|---|
| 输入变量 | 石脑油原料变量 | 6 | 正构烷烃质量分数,%;异构烷烃质量分数,%;环烷烃质量分数,%;芳烃质量分数,%;蒸馏曲线,℃;密度,kg/m3 |
| 操作与状态变量 | 12 | 石脑油总进料量,kg/h;一次稀释蒸汽流量,kg/h;稀释比;裂解气进稀释蒸汽混合器温度,℃;二次稀释蒸汽流量,kg/h;横跨段压力,kPa;横跨段温度,℃;总平均裂解炉出口温度(COT),℃;线性急冷换热器出口温度,℃;急冷油流量,t/h;裂解气出急冷油混合器温度,℃;裂解炉出口压力(COP),kPa | |
| 目标变量 | 产品收率 | 6 | H2摩尔分数,%;CH4摩尔分数,%;C2H4摩尔分数,%;C2H6摩尔分数,%;C3H6摩尔分数,%;C3H8摩尔分数,% |
| 变量 | 数据集 | 训练集 | 测试集 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 最小值 | 最大值 | 平均值 | 标准差 | 中位数 | 最小值 | 最大值 | 最小值 | 最大值 | |
| 正构烷烃质量分数/% | 31.54 | 40.66 | 35.25 | 1.8470 | 34.63 | 31.54 | 40.66 | 31.92 | 36.93 |
| 异构烷烃质量分数/% | 33.90 | 39.74 | 37.49 | 1.1646 | 37.83 | 34.63 | 39.74 | 33.90 | 39.05 |
| 环烷烃质量分数/% | 14.52 | 19.64 | 16.96 | 0.9189 | 16.75 | 14.52 | 19.64 | 15.35 | 19.62 |
| 芳烃质量分数/% | 7.47 | 12.32 | 10.03 | 0.8647 | 10.02 | 7.47 | 12.12 | 8.30 | 12.32 |
| 密度/kg·m-3 | 716.21 | 719.81 | 718.30 | 0.7024 | 718.33 | 716.21 | 719.81 | 716.80 | 718.75 |
| 石脑油总进料量/kg·h-1 | 39990.06 | 45101.95 | 43813.81 | 1569.90 | 44949.28 | 39990.06 | 45013.16 | 40031.38 | 45101.95 |
| 稀释比 | 0.4946 | 0.5394 | 0.5117 | 0.0084 | 0.5092 | 0.4946 | 0.5394 | 0.5044 | 0.5330 |
| 横跨段压力/kPa | 200.80 | 249.40 | 229.09 | 12.1147 | 232.35 | 200.80 | 246.61 | 203.98 | 249.40 |
| 横跨段温度/℃ | 609.03 | 638.16 | 623.20 | 5.8578 | 622.11 | 609.03 | 638.16 | 610.91 | 632.93 |
| COT/℃ | 817.04 | 838.17 | 827.53 | 3.5870 | 827.62 | 819.99 | 838.17 | 817.04 | 830.17 |
| COP/kPa | 42.37 | 47.94 | 45.15 | 0.9296 | 45.17 | 42.37 | 47.94 | 42.40 | 47.93 |
| C2H4摩尔分数/% | 30.67 | 32.37 | 31.50 | 0.2868 | 31.53 | 30.67 | 32.37 | 30.74 | 32.36 |
| C3H6摩尔分数/% | 10.07 | 11.55 | 10.82 | 0.2435 | 10.77 | 10.07 | 11.55 | 10.08 | 11.37 |
| P/E | 0.4803 | 0.5499 | 0.5153 | 0.0112 | 0.5154 | 0.4804 | 0.5499 | 0.4803 | 0.5464 |
| 变量 | 数据集 | 训练集 | 测试集 | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 最小值 | 最大值 | 平均值 | 标准差 | 中位数 | 最小值 | 最大值 | 最小值 | 最大值 | |
| 正构烷烃质量分数/% | 31.54 | 40.66 | 35.25 | 1.8470 | 34.63 | 31.54 | 40.66 | 31.92 | 36.93 |
| 异构烷烃质量分数/% | 33.90 | 39.74 | 37.49 | 1.1646 | 37.83 | 34.63 | 39.74 | 33.90 | 39.05 |
| 环烷烃质量分数/% | 14.52 | 19.64 | 16.96 | 0.9189 | 16.75 | 14.52 | 19.64 | 15.35 | 19.62 |
| 芳烃质量分数/% | 7.47 | 12.32 | 10.03 | 0.8647 | 10.02 | 7.47 | 12.12 | 8.30 | 12.32 |
| 密度/kg·m-3 | 716.21 | 719.81 | 718.30 | 0.7024 | 718.33 | 716.21 | 719.81 | 716.80 | 718.75 |
| 石脑油总进料量/kg·h-1 | 39990.06 | 45101.95 | 43813.81 | 1569.90 | 44949.28 | 39990.06 | 45013.16 | 40031.38 | 45101.95 |
| 稀释比 | 0.4946 | 0.5394 | 0.5117 | 0.0084 | 0.5092 | 0.4946 | 0.5394 | 0.5044 | 0.5330 |
| 横跨段压力/kPa | 200.80 | 249.40 | 229.09 | 12.1147 | 232.35 | 200.80 | 246.61 | 203.98 | 249.40 |
| 横跨段温度/℃ | 609.03 | 638.16 | 623.20 | 5.8578 | 622.11 | 609.03 | 638.16 | 610.91 | 632.93 |
| COT/℃ | 817.04 | 838.17 | 827.53 | 3.5870 | 827.62 | 819.99 | 838.17 | 817.04 | 830.17 |
| COP/kPa | 42.37 | 47.94 | 45.15 | 0.9296 | 45.17 | 42.37 | 47.94 | 42.40 | 47.93 |
| C2H4摩尔分数/% | 30.67 | 32.37 | 31.50 | 0.2868 | 31.53 | 30.67 | 32.37 | 30.74 | 32.36 |
| C3H6摩尔分数/% | 10.07 | 11.55 | 10.82 | 0.2435 | 10.77 | 10.07 | 11.55 | 10.08 | 11.37 |
| P/E | 0.4803 | 0.5499 | 0.5153 | 0.0112 | 0.5154 | 0.4804 | 0.5499 | 0.4803 | 0.5464 |
| 每层卷积核数量 | R2 | 训练时间/s |
|---|---|---|
| [64, 128, 256, 512, 512] | 0.8423 | 434 |
| [16, 16, 16, 16, 16] | 0.9061 | 212 |
| [32, 32, 32, 32, 32] | 0.9253 | 224 |
| [64, 64, 64, 64, 64] | 0.9120 | 265 |
| [128, 128, 128, 128, 128] | 0.9144 | 222 |
| [256, 256, 256, 256, 256] | 0.8688 | 502 |
| [512, 512, 512, 512, 512] | 0.7784 | 611 |
| 每层卷积核数量 | R2 | 训练时间/s |
|---|---|---|
| [64, 128, 256, 512, 512] | 0.8423 | 434 |
| [16, 16, 16, 16, 16] | 0.9061 | 212 |
| [32, 32, 32, 32, 32] | 0.9253 | 224 |
| [64, 64, 64, 64, 64] | 0.9120 | 265 |
| [128, 128, 128, 128, 128] | 0.9144 | 222 |
| [256, 256, 256, 256, 256] | 0.8688 | 502 |
| [512, 512, 512, 512, 512] | 0.7784 | 611 |
| 网络结构 | 每层卷积核大小 | R2 | 训练时间/s |
|---|---|---|---|
| conv3 | 3×1 | 0.9202 | 215 |
| conv4 | 4×1 | 0.9194 | 237 |
| conv5 | 5×1 | 0.9253 | 224 |
| conv6 | 6×1 | 0.9245 | 233 |
| conv7 | 7×1 | 0.8965 | 216 |
| 网络结构 | 每层卷积核大小 | R2 | 训练时间/s |
|---|---|---|---|
| conv3 | 3×1 | 0.9202 | 215 |
| conv4 | 4×1 | 0.9194 | 237 |
| conv5 | 5×1 | 0.9253 | 224 |
| conv6 | 6×1 | 0.9245 | 233 |
| conv7 | 7×1 | 0.8965 | 216 |
| Dropout层参数设置 | R2 | 训练时间/s |
|---|---|---|
| 无 | 0.9080 | 217 |
| 0.2 | 0.9225 | 216 |
| 0.3 | 0.9493 | 212 |
| 0.4 | 0.9268 | 218 |
| 0.5 | 0.9259 | 218 |
| Dropout层参数设置 | R2 | 训练时间/s |
|---|---|---|
| 无 | 0.9080 | 217 |
| 0.2 | 0.9225 | 216 |
| 0.3 | 0.9493 | 212 |
| 0.4 | 0.9268 | 218 |
| 0.5 | 0.9259 | 218 |
| 模型 | 优化器 | 最大迭代次数 | 初始学习率 | 学习率下降因子 | 学习率下降周期 |
|---|---|---|---|---|---|
| CNN | Adam | 40 | 0.001 | 0.8 | 5 |
| CNN-LSTM | Adam | 40 | 0.001 | 0.8 | 5 |
| VGG16 | Adam | 20 | 0.001 | 0.8 | 5 |
| D-VGG | Adam | 20 | 0.001 | 0.8 | 5 |
| 模型 | 优化器 | 最大迭代次数 | 初始学习率 | 学习率下降因子 | 学习率下降周期 |
|---|---|---|---|---|---|
| CNN | Adam | 40 | 0.001 | 0.8 | 5 |
| CNN-LSTM | Adam | 40 | 0.001 | 0.8 | 5 |
| VGG16 | Adam | 20 | 0.001 | 0.8 | 5 |
| D-VGG | Adam | 20 | 0.001 | 0.8 | 5 |
| 模型 | R2 | MAE | MBE | RMSE | 计算时间/s | ||||
|---|---|---|---|---|---|---|---|---|---|
| H2 | CH4 | C2H4 | C3H6 | P/E | |||||
| CNN | 0.9176 | 0.9481 | 0.8119 | 0.8849 | 0.8303 | 0.0614 | 0.0026 | 0.0844 | 122.4 |
| CNN-LSTM | 0.9513 | 0.9583 | 0.8644 | 0.9062 | 0.8908 | 0.0506 | -0.0074 | 0.0726 | 141.6 |
| VGG16 | 0.9188 | 0.8947 | 0.8814 | 0.9177 | 0.8773 | 0.0591 | -0.0087 | 0.0880 | 317.8 |
| BP神经网络 | 0.9700 | 0.9737 | 0.8944 | 0.9235 | 0.9049 | 0.0410 | -0.0003 | 0.0617 | 178.8 |
| SVR | 0.9599 | 0.9700 | 0.8905 | 0.9243 | 0.9109 | 0.0418 | -0.0010 | 0.0640 | 34min |
| D-VGG | 0.9729 | 0.9748 | 0.9294 | 0.9423 | 0.9271 | 0.0347 | -0.0001 | 0.0550 | 212 |
| 模型 | R2 | MAE | MBE | RMSE | 计算时间/s | ||||
|---|---|---|---|---|---|---|---|---|---|
| H2 | CH4 | C2H4 | C3H6 | P/E | |||||
| CNN | 0.9176 | 0.9481 | 0.8119 | 0.8849 | 0.8303 | 0.0614 | 0.0026 | 0.0844 | 122.4 |
| CNN-LSTM | 0.9513 | 0.9583 | 0.8644 | 0.9062 | 0.8908 | 0.0506 | -0.0074 | 0.0726 | 141.6 |
| VGG16 | 0.9188 | 0.8947 | 0.8814 | 0.9177 | 0.8773 | 0.0591 | -0.0087 | 0.0880 | 317.8 |
| BP神经网络 | 0.9700 | 0.9737 | 0.8944 | 0.9235 | 0.9049 | 0.0410 | -0.0003 | 0.0617 | 178.8 |
| SVR | 0.9599 | 0.9700 | 0.8905 | 0.9243 | 0.9109 | 0.0418 | -0.0010 | 0.0640 | 34min |
| D-VGG | 0.9729 | 0.9748 | 0.9294 | 0.9423 | 0.9271 | 0.0347 | -0.0001 | 0.0550 | 212 |
| [1] | 王红秋, 侯雨璇, 黄格省. 乙烯绿色低碳生产技术进展[J]. 油气与新能源, 2024, 36(2): 74-79, 86. |
| WANG Hongqiu, HOU Yuxuan, HUANG Gexing. A review of the progress in green and low-carbon ethylene production technology[J]. Petroleum and New Energy, 2024, 36(2): 74-79, 86. | |
| [2] | 刘佳. 乙烯裂解炉收率建模及优化控制策略[D]. 大连: 大连理工大学, 2016. |
| LIU Jia. Yield modeling and optimal control strategy of ethylene cracking furnace[D]. Dalian: Dalian University of Technology, 2016. | |
| [3] | 温在鑫, 钱斌, 胡蓉, 等. 基于学习型人工蜂群算法优化双向GRU的乙烯产率预测[J]. 控制理论与应用, 2023, 40(10): 1746-1756. |
| WEN Zaixin, QIAN Bin, HU Rong, et al. Ethylene yield prediction based on bi-directional GRU optimized by learning-based artificial bee colony algorithm[J]. Control Theory & Applications, 2023, 40(10): 1746-1756. | |
| [4] | FUENTES-CORTÉS Luis Fabián, Antonio FLORES-TLACUAHUAC, NIGAM Krishna D P. Machine learning algorithms used in PSE environments: A didactic approach and critical perspective[J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8932-8962. |
| [5] | 潘艳秋, 张超阳, 李鹏飞, 等. 基于数据驱动的催化重整产品质量预测[J]. 石油炼制与化工, 2023, 54(9): 131-136. |
| PAN Yanqiu, ZHANG Chaoyang, LI Pengfei, et al. Prediction of the quality of catalytic reforming product based on data-driven[J]. Petroleum Processing and Petrochemicals, 2023, 54(9): 131-136. | |
| [6] | 郗荣荣, 赵飞, 李吉广, 等. 基于神经网络的渣油浆态床加氢产物分布预测模型[J]. 石油炼制与化工, 2023, 54(11): 86-95. |
| XI Rongrong, ZHAO Fei, LI Jiguang, et al. Prediction model of residue hydrocracking product distribution in slurry bed based on neural network[J]. Petroleum Processing and Petrochemicals, 2023, 54(11): 86-95. | |
| [7] | 张书铭, 刘化章. 基于BP神经网络模型优化Fe1- x O基氨合成催化剂[J]. 化工进展, 2024, 43(3): 1302-1308. |
| ZHANG Shuming, LIU Huazhang. Optimization of Fe1- x O ammonia synthesis catalyst by BP neural network model[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. | |
| [8] | 曾思颖, 杨敏博, 冯霄. 基于机器学习的煤层气组成预测及液化过程的实时优化[J]. 化工进展, 2023, 42(10): 5059-5066. |
| ZENG Siying, YANG Minbo, FENG Xiao. Machine learning-based prediction of coalbed methane composition and real-time optimization of liquefaction process[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5059-5066. | |
| [9] | 李文华, 叶洪涛, 罗文广, 等. 基于MHSA-LSTM的软测量建模及其在化工过程中的应用[J]. 化工学报, 2024, 75(12): 4654-4665. |
| LI Wenhua, YE Hongtao, LUO Wenguang, et al. Soft sensor modeling based on MHSA-LSTM and its application in chemical process[J]. CIESC Journal, 2024, 75(12): 4654-4665. | |
| [10] | WANG Hang, PENG Minjun, WESLEY HINES J, et al. A hybrid fault diagnosis methodology with support vector machine and improved particle swarm optimization for nuclear power plants[J]. ISA Transactions, 2019, 95: 358-371. |
| [11] | 张佳鑫, 张淼, 戴一阳, 等. 面向实际化工过程故障诊断的强化深度卷积神经网络模型构建与应用[J]. 化工进展, 2024, 43(9): 4833-4844. |
| ZHANG Jiaxin, ZHANG Miao, DAI Yiyang, et al. Design and application of enhanced deep convolutional neural networks model for fault diagnosis in practical chemical processes[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4833-4844. | |
| [12] | CHEN Hao, ZHANG Haifei, YANG Yuwei, et al. F-norm-based soft LDA algorithm for fault detection in chemical production processes[J]. ACS Omega, 2024, 9(32): 34725-34734. |
| [13] | ALVES GOULART Douglas, DUTRA PEREIRA Renato. Autonomous pH control by reinforcement learning for electroplating industry wastewater[J]. Computers & Chemical Engineering, 2020, 140: 106909. |
| [14] | 马楠, 李洪奇, 刘华林, 等. 基于SAC的炼厂原油储运调度方法[J]. 化工进展, 2024, 43(3): 1167-1177. |
| MA Nan, LI Hongqi, LIU Hualin, et al. Scheduling algorithm for refinery crude oil storage and transportation based on SAC[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1167-1177. | |
| [15] | 李蓝宇, 黄新烨, 王笑楠, 等. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
| LI Lanyu, HUANG Xinye, WANG Xiaonan, et al. Reflection and prospects on the intelligent transformation of chemical engineering research[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. | |
| [16] | 吴正浩, 周天航, 蓝兴英, 等. 人工智能驱动化学品创新设计的实践与展望[J]. 化工进展, 2023, 42(8): 3910-3916. |
| WU Zhenghao, ZHOU Tianhang, LAN Xingying, et al. AI-driven innovative design of chemicals in practice and perspective[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. | |
| [17] | ZHAO Junfeng, PENG Zhiping, CUI Delong, et al. A method for measuring tube metal temperature of ethylene cracking furnace tubes based on machine learning and neural network[J]. IEEE Access, 2019, 7: 158643-158654. |
| [18] | 张子默, 崔得龙. 基于Attention-CS-LSTM乙烯裂解炉管温度预测[J]. 长江信息通信, 2024, 37(4): 43-46. |
| ZHANG Zimo, CUI Delong. Prediction of temperature field in an improved CS-LSTM ethylene cracking furnace[J]. Changjiang Information & Communications, 2024, 37(4): 43-46. | |
| [19] | 王子宗, 索寒生, 赵学良, 等. 数字孪生智能乙烯工厂工业互联网平台的设计与构建[J]. 化工进展, 2023, 42(10): 5029-5036. |
| WANG Zizong, SUO Hansheng, ZHAO Xueliang, et al. Design and construction of industrial Internet platform for digital twin intelligent ethylene plant[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5029-5036. | |
| [20] | 赵毅. 机器学习技术应用于乙烯裂解炉运行状况的分析与模拟[J]. 计算机与应用化学, 2017, 34(12): 979-987. |
| ZHAO Yi. Application of machine learning technology in analysis and simulation of ethylene cracking furnace[J]. Computers and Applied Chemistry, 2017, 34(12): 979-987. | |
| [21] | BI Kexin, BEYKAL Burcu, AVRAAMIDOU Styliani, et al. Integrated modeling of transfer learning and intelligent heuristic optimization for steam cracking process[J]. Industrial & Engineering Chemistry Research, 2020, 59(37): 16357-16367. |
| [22] | 赵祺铭, 毕可鑫, 邱彤. 基于机器学习的乙烯裂解过程模型比较与集成[J]. 清华大学学报(自然科学版), 2022, 62(9): 1450-1457. |
| ZHAO Qiming, BI Kexin, QIU Tong. Comparison and integration of machine learning based ethylene cracking process models[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(9): 1450-1457. | |
| [23] | 郑可欣, 江雨欣, 毕可鑫, 等. 用于蒸汽裂解产物成分预测的集成迁移学习框架[J]. 化工进展, 2024, 43(5): 2880-2889. |
| ZHENG Kexin, JIANG Yuxin, BI Kexin, et al. Ensemble transfer learning framework for outflow compositions prediction in steam cracking process[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2880-2889. | |
| [24] | 罗顺桦, 王振雷, 王昕. 基于注意力机制的Multi-head CNN-LSTM软测量建模[J]. 控制工程, 2022, 29(10): 1821-1828. |
| LUO Shunhua, WANG Zhenlei, WANG Xin. Multi-head CNN-LSTM soft sensing modeling based on attention mechanism[J]. Control Engineering of China, 2022, 29(10): 1821-1828. | |
| [25] | SIMONYAN Karen, ZISSERMAN Andrew. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-14)[2024-10-10]. . |
| [26] | 王国明, 李苗苗. 基于VGG网络的少样本图像分类方法研究[J]. 电脑知识与技术, 2024, 20(17): 6-10. |
| WANG Guoming, LI Miaomiao. Research on image classification method with few samples based on VGG network[J]. Computer Knowledge and Technology, 2024, 20(17): 6-10. | |
| [27] | 满凤环, 陈秀宏, 何佳佳. 改进的Dropout正则化卷积神经网络[J]. 传感器与微系统, 2018, 37(4): 44-47. |
| MAN Fenghuan, CHEN Xiuhong, HE Jiajia. Improved Dropout regularization CNN[J]. Transducer and Microsystem Technologies, 2018, 37(4): 44-47. | |
| [28] | 刘谱辉, 周国平, 周逸鹏. 基于GRU-Dropout网络的避雷器阻性电流预测研究[J]. 自动化与仪表, 2024, 39(8): 6-9, 19. |
| LIU Puhui, ZHOU Guoping, ZHOU Yipeng. Study of lightning arrester resistive current prediction based on GRU-Dropout network[J]. Automation & Instrumentation, 2024, 39(8): 6-9, 19. |
| [1] | YANG Zhenglu, YANG Lifeng, LU Xiaofei, SUO Xian, ZHANG Anyun, CUI Xili, XING Huabin. Advances in machine learning accelerating the screening and discovery of porous adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4288-4301. |
| [2] | WU Bo, MA Linxuan, ZHANG Mingfeng, CAO Lijuan, ZHOU Lei, WANG Xuezhong. Prediction of hydrotalcite particle size distribution based on machine learning ultrasonic attenuation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4365-4374. |
| [3] | SHEN Xiankun, JIA Zhiyong, LAN Xiaocheng, WANG Tiefeng. Progress on CFD-PBM coupled model for slurry reactors [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4408-4418. |
| [4] | FAN Kaifeng, YU Chunyu, ZHOU Shidong, WAN Yufei, GUO Jingjing, LI Si. Research progress on oil interface tracking technology and mixed oil length model in the batch transportation [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3697-3708. |
| [5] | WU Banghua, WANG Dewu, WANG Ruojin, LIU Yan, XU Rongsheng, ZHANG Shaofeng. Initial fluidization characteristics of gas-solid rolling fluidized bed [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3770-3780. |
| [6] | CHEN Yang, LUO Jin, WANG Dianlin, YANG Zuguo, YANG Peng, CHEN Yong, ZHONG Xiang, TANG Li. Experimental study on the effect of surfactant complex systems with different molecular structures on emulsification and viscosity reduction of extra-heavy oil [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3838-3849. |
| [7] | WANG Ying, TANG Mengfei, WANG Ying, ZHANG Chuanfang, ZHANG Guojie, LIU Jun, ZHAO Yuqiong. Preparation of CNT composites from coal pyrolysis catalyzed by different alkali metals for adsorption of Rhodamine B [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3985-3996. |
| [8] | MA Bingrui, DUAN Xuebin, CHEN Cheng, WANG Songxue, CHEN Lin, WANG Shoucheng, LI Jincheng, WU Guizhi, YAN Boyin. Kinetics and role of active chlorine species in the degradation of carbamazepine by UV combined with chlorine [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4212-4222. |
| [9] | SHAN Linghai, DUAN Huanhuan, ZHENG Xuming, HUANG Xiaohuang, CUI Guomin. A new competitive enhancement strategy for heat exchange units and optimization of heat exchange networks [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3393-3404. |
| [10] | LI Ming, ZHOU Yi, NAN Lan, YE Xiaosheng. Advances in automatic optimization of continuous synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3190-3198. |
| [11] | YU Ziyu, CHEN Xiaofei, HOU Chunguang, YUE Dianhe, PENG Yuelian, AN Quanfu. Comparative study of vapor pervaporation and vacuum membrane distillation in dicarbamate dehydration [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3247-3257. |
| [12] | LI Xiang, LI Jiaying, NI Heng, SUN Haoran, CAO Jiawei, CHEN Yuxuan, LIU Fengjiao. Advances in the prediction of activation energy barriers for hydrogen atom transfer reactions [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3336-3344. |
| [13] | WANG Xiaonan, FU Siwei, LIU Kuan, LIN Congsheng, LIN Xiaofeng. Machine learning methods for sustainable alternatives and transition of energy materials [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2767-2776. |
| [14] | LI Linghan, ZHANG Shumei, DONG Feng. State identification of gas-liquid two-phase flow in few-shot scenario [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1794-1805. |
| [15] | LI Jinxia, RU Haoran, LIU Wenkai, SUN Hongjun, DING Hongbing. Physical-guided neural network based on three-fluid model for disturbance wave velocity prediction [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1815-1824. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |