Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 4050-4060.DOI: 10.16085/j.issn.1000-6613.2024-0736
• Materials science and technology • Previous Articles
LI Xiang(
), WU Zhangyong(
), JIANG Jiajun, ZHU Qichen, GONG Qiu
Received:2024-05-06
Revised:2024-06-11
Online:2025-08-04
Published:2025-07-25
Contact:
WU Zhangyong
通讯作者:
吴张永
作者简介:李翔(2002—),男,硕士研究生,研究方向为流体传动与控制。E-mail:2817617424@qq.com。
基金资助:CLC Number:
LI Xiang, WU Zhangyong, JIANG Jiajun, ZHU Qichen, GONG Qiu. Tribological properties of seawater-based MoS2/SiC binary nanofluids[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4050-4060.
李翔, 吴张永, 蒋佳骏, 朱启晨, 龚湫. 海水基MoS2/SiC二元纳米流体摩擦学特性[J]. 化工进展, 2025, 44(7): 4050-4060.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0736
| 纳米流体 | 摩擦测试前 | 摩擦测试后 | 幅度/% | 超声搅拌1h | 超声搅拌2h |
|---|---|---|---|---|---|
| MoS2 | 0.69 | 0.58 | -15.9% | 0.62 | 0.66 |
| SiC | 0.82 | 0.79 | -3.66% | 0.8 | 0.82 |
| 2∶1 | 0.84 | 0.81 | -3.57% | 0.82 | 0.83 |
| 1∶1 | 0.91 | 0.87 | -4.4% | 0.9 | 0.9 |
| 1∶2 | 0.93 | 0.89 | -4.3% | 0.91 | 0.92 |
| 纳米流体 | 摩擦测试前 | 摩擦测试后 | 幅度/% | 超声搅拌1h | 超声搅拌2h |
|---|---|---|---|---|---|
| MoS2 | 0.69 | 0.58 | -15.9% | 0.62 | 0.66 |
| SiC | 0.82 | 0.79 | -3.66% | 0.8 | 0.82 |
| 2∶1 | 0.84 | 0.81 | -3.57% | 0.82 | 0.83 |
| 1∶1 | 0.91 | 0.87 | -4.4% | 0.9 | 0.9 |
| 1∶2 | 0.93 | 0.89 | -4.3% | 0.91 | 0.92 |
| 流体类别 | 平均摩擦系数 |
|---|---|
| SiC | 0.154 |
| MoS2 | 0.122 |
| 2∶1 | 0.143 |
| 1∶1 | 0.135 |
| 1∶2 | 0.119 |
| 流体类别 | 平均摩擦系数 |
|---|---|
| SiC | 0.154 |
| MoS2 | 0.122 |
| 2∶1 | 0.143 |
| 1∶1 | 0.135 |
| 1∶2 | 0.119 |
| [1] | 毋少峰. 仿生非光滑表面配流副润滑承载机理数值模拟及摩擦磨损实验研究[D]. 秦皇岛: 燕山大学, 2017. |
| WU Shaofeng. Simulation research on Lubrication-bearing mechanism and experiment study on friction-wear for port pair with bionic non-smooth surface[D]. Qinhuangdao: Yanshan University, 2017. | |
| [2] | 杨华勇, 周华, 路甬祥. 水液压技术的研究现状与发展趋势[J]. 中国机械工程, 2000, 11(12): 1430-1433. |
| YANG Huayong, ZHOU Hua, LU Yongxiang. Research achievements and developing trends of water hydraulics[J]. China Mechanical Engineering, 2000, 11(12): 1430-1433. | |
| [3] | KOU Baofu, LI Zhenshun, ZHANG Zhang, et al. Friction and wear properties of hydraulic components with ceramic/steel-to-steel pairs[J]. Journal of Mechanical Science and Technology, 2021, 35(8): 3375-3388. |
| [4] | WANG Zhiqiang, CAO Jiangtao, REN Xiaoguang, et al. Comparative study of the tribological properties of CFRPEEK, stainless and carbon steel in high water-based fluid[J]. Tribology Transactions, 2023, 66(5): 895-905. |
| [5] | KIM GwangSeok, KIM BomSok, LEE SangYul. High-speed wear behaviors of CrSiN coatings for the industrial applications of water hydraulics[J]. Surface and Coatings Technology, 2005, 200(5/6): 1814-1818. |
| [6] | MAJDIČ F, VELKAVRH I, KALIN M. Improving the performance of a proportional 4/3 water-hydraulic valve by using a diamond-like-carbon coating[J]. Wear, 2013, 297(1/2): 1016-1024. |
| [7] | CHOI Stephen. Nanofluids: A new field of scientific research and innovative applications[J]. Heat Transfer Engineering, 2008, 29(5): 429-431. |
| [8] | SUN Jianlin, MENG Yanan, ZHANG Boming. Tribological behaviors and lubrication mechanism of water-based MoO3 nanofluid during cold rolling process[J]. Journal of Manufacturing Processes, 2021, 61: 518-526. |
| [9] | THAKUR Archana, MANNA Alakesh, SAMIR Sushant. Multi-response optimization of turning parameters during machining of EN-24 steel with SiC nanofluids based minimum quantity lubrication[J]. Silicon, 2020, 12(1): 71-85. |
| [10] | JIANG Jiajun, MENG Xian, MU Kunyang, et al. Preparation of liquid metal-based SiC/graphene binary hybrid nanofluid and its basic properties as hydraulic transmission medium[J]. Tribology Letters, 2024, 72(1): 33. |
| [11] | 彭锐涛, 童佳威, 赵林峰, 等. 水基MWCNTs/MoS2复合纳米流体的摩擦学性能研究[J]. 摩擦学学报, 2021, 41(5): 690-699. |
| PENG Ruitao, TONG Jiawei, ZHAO Linfeng, et al. Preparation and tribological properties of water-based CNTs/MoS2 composite nanofluid[J]. Tribology, 2021, 41(5): 690-699. | |
| [12] | PENG Ruitao, ZHU Xixi, ZHOU Minzi, et al. Preparation and tribological properties of hybrid nanofluid of BNNs and SiC modified by plasma[J]. Tribology International, 2024, 191: 109168. |
| [13] | 巴召文, 黄国威, 乔旦, 等. 石墨烯/二硫化钼复合纳米添加剂的制备及摩擦学性能研究[J]. 摩擦学学报, 2019, 39(2): 140-149. |
| BA Zhaowen, HUANG Guowei, QIAO Dan, et al. Preparation and tribological performance of RGO/MoS2 as composite nano-additives[J]. Tribology, 2019, 39(2): 140-149. | |
| [14] | KONG Linghui, SUN Jianlin, BAO Yueyue. Preparation, characterization and tribological mechanism of nanofluids[J]. RSC Advances, 2017, 7(21): 12599-12609. |
| [15] | WANG Jin, LI Guolong, LI Tan, et al. Effect of various surfactants on stability and thermophysical properties of nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(6): 4057-4070. |
| [16] | LIANG Tuo, HOU Jirui, XI Jiaxin. Mechanisms of nanofluid based modification MoS2 nanosheet for enhanced oil recovery in terms of interfacial tension, wettability alteration and emulsion stability[J]. Journal of Dispersion Science and Technology, 2023, 44(1): 26-37. |
| [17] | 朱启晨, 吴张永, 王志强, 等. 低温下硅油基纳米磁流体沉降稳定性与黏度特性[J]. 化工进展, 2023, 42(10): 5101-5110. |
| ZHU Qichen, WU Zhangyong, WANG Zhiqiang, et al. Sedimentation stability and viscosity properties of silicone oil-based magnetic nanofluid at low temperature[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5101-5110. | |
| [18] | HABIBI Ali, HEIDARI Mohammad A, Hamoud AL-HADRAMI, et al. Effect of nanofluid treatment on water sensitive formation to investigate water shock phenomenon, an experimental study[J]. Journal of Dispersion Science and Technology, 2014, 35(7): 889-897. |
| [19] | XU Lianman, LI Yajing, DU Linlin, et al. Study on the effect of SDBS and SDS on deep coal seam water injection[J]. Science of the Total Environment, 2023, 856: 158930. |
| [20] | 蒋佳骏, 吴张永, 朱启晨. 水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体的稳定性、流变性、热物性与低速润滑性[J]. 材料导报, 2023, 37(20): 44-51. |
| JIANG Jiajun, WU Zhangyong, ZHU Qichen. Stability, rheological properties, thermal properties and low-speed lubricity of water-based Ni0.5Zn0.5Fe2O4-SiC binary hybrid magnetic fluid[J]. Materials Reports, 2023, 37(20): 44-51. | |
| [21] | 王肇庆, 苏惠惠. 斯托克斯粘滞阻力公式的简化推导[J]. 电子科技大学学报, 1997, 26(S1): 261-264. |
| WANG Zhaoqing, SU Huihui. Simple derivation of stokes resistance formula [J]. Journal of University of Electronic Science and Technology of China, 1997, 26(S1): 261-264. | |
| [22] | ZHOU Qi, HUANG Jingxia, WANG Jinqing, et al. Preparation of a reduced graphene oxide/zirconia nanocomposite and its application as a novel lubricant oil additive[J]. RSC Advances, 2015, 5(111): 91802-91812. |
| [23] | WITHARANA Sanjeeva, CHEN Haisheng, DING Yulong. Stability of nanofluids in quiescent and shear flow fields[J]. Nanoscale Research Letters, 2011, 6(1): 231. |
| [24] | XIE Siyu, ZHANG Yi, SONG Yanfang, et al. Comparison of the corrosion behavior of brass in TiO2 and Al2O3 nanofluids[J]. Nanomaterials, 2020, 10(6): 1046. |
| [25] | PAREKH Kinnari, JAUHARI Smita, R-V UPADHYAY. Mechanism of acid corrosion inhibition using magnetic nanofluid[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7(4): 045007. |
| [26] | DENG Qing, ZHANG Po, LI Xiaozhi, et al. Effect of seawater salinity on the fretting corrosion behavior of nickel-aluminum bronze (NAB) alloy[J]. Tribology International, 2024, 193: 109357. |
| [27] | WANG Guorui, DAI Zhaohe, WANG Yanlei, et al. Measuring interlayer shear stress in bilayer graphene[J]. Physical Review Letters, 2017, 119(3): 036101. |
| [28] | XIE Mengxin, PAN Bingli, LIU Hongyu, et al. One-step synthesis of carbon sphere@ 1 T-MoS2 towards superior antiwear and lubricity[J]. Tribology International, 2022, 176: 107927. |
| [29] | MOUSAVI Seyed Borhan, ZEINALI HERIS Saeed, Patrice ESTELLÉ. Viscosity, tribological and physicochemical features of ZnO and MoS2 diesel oil-based nanofluids: An experimental study[J]. Fuel, 2021, 293: 120481. |
| [30] | MENG Yanan, SUN Jianlin, HE Jiaqi, et al. Interfacial interaction induced synergistic lubricating performance of MoS2 and SiO2 composite nanofluid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626: 126999. |
| [31] | XUE Fan, CHENG Zhilin. Investigation of tribological behavior of MOFs/g-C3N4 nanocomposite for insight into effect of flake-on-sheet and ball-on-sheet nanostructure[J]. Tribology International, 2024, 195: 109654. |
| [32] | CHEN Xiangnan, WANG Xiaohui, FANG De. A review on C1s XPS-spectra for some kinds of carbon materials[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(12): 1048-1058. |
| [33] | DEOKAR G, VIGNAUD D, ARENAL R, et al. Synthesis and characterization of MoS2 nanosheets[J]. Nanotechnology, 2016, 27(7): 075604. |
| [34] | KONG Yingchao, DONG Jiwei, LIU Zan, et al. In situ study of structure-activity relationship between structure and tribological properties of bulk layered materials by four-ball friction tester[J]. ACS Omega, 2020, 5(24): 14212-14220. |
| [35] | RAWAT Sooraj Singh, HARSHA A P, KHATRI Om P. Synergistic effect of binary systems of nanostructured MoS2/SiO2 and GO/SiO2 as additives to coconut oil-derived grease: Enhancement of physicochemical and lubrication properties[J]. Lubrication Science, 2021, 33(5): 290-307. |
| [36] | BAI Yanyan, CHEN Qiang, LANG Xujin, et al. Dispersion stability and tribological behavior of nanocomposite supramolecular gel lubricants and molecular dynamic simulation[J]. Tribology International, 2024, 191: 109150. |
| [1] | LI Kai, WEI Helin, YIN Zhifan, ZUO Xiahua, YU Xiaoyu, YIN Hongyuan, YANG Weimin, YAN Hua, AN Ying. Prediction of thermal conductivity and viscosity of water-based carbon black nanofluids based on GA-BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4138-4147. |
| [2] | WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822. |
| [3] | LI Kai, WEI Helin, ZUO Xiahua, YANG Weimin, YAN Hua, AN Ying. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. |
| [4] | ZHANG Dailing, DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying. Photothermal characteristics of waste toner nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798. |
| [5] | XIANG Shuo, LU Peng, SHI Weinian, YANG Xin, HE Yan, ZHU Liye, KONG Xiangwei. Controllable and large-scale preparation of two-dimensional WS2 nanosheet and its tribological properties as lubricant additives in lithium grease [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4783-4790. |
| [6] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
| [7] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
| [8] | WANG Chao, WANG Zongyong, ZHANG Wei, HAN Xu, LIU Lei, FU Qihui. Effect of jet impingement nanofluid on heat transfer characteristics of semicircular spiral channels [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6207-6217. |
| [9] | JIANG Jiajun, WU Zhangyong, ZHU Qichen, CAI Changli, ZHU Jiajun, WANG Zhiqiang. Rheological properties and lubricity of In-Bi-Sn based Si3N4/GNFs hybrid nanofluid [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6197-6206. |
| [10] | CHEN Wenzhe, WANG Shuang, ZHAI Yuling, LI Zhouhang. Effect of aggregation state on the thermal conductivity of nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5700-5706. |
| [11] | ZHU Qichen, WU Zhangyong, WANG Zhiqiang, JIANG Jiajun, LI Xiang. Sedimentation stability and viscosity properties of silicone oil-based magnetic nanofluid at low temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5101-5110. |
| [12] | LU Shijian, LIU Ling, LIU Ziwu, GUO Bowen, YU Xulin, LIANG Yan, ZHAO Dongya, ZHU Quanmin. Study of CO2 absorption stability of AEP-DPA-CuO phase change nanofluids [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4555-4561. |
| [13] | LI Peishan, ZHANG Mengchen, LI Mingjie, ZHENG Wenbiao, LIU Minchao, XIE Gaoyi, XU Xiaolong, LIU Changyu, JIA Jianbo. Nanofluidic channels based on two-dimensional material membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3745-3757. |
| [14] | LI Yucan, HU Dinghua, LIU Jinhui. Evolution characteristics of transient evaporation rate of Al2O3 nanofluid droplet [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3493-3501. |
| [15] | LIN Qingyu, WANG Zhu, FENG Zhenfei, LING Biao, CHEN Zhen. Review progress on twisted tape structure for heat transfer and entropy generation in tube [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5709-5721. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |