Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 4013-4021.DOI: 10.16085/j.issn.1000-6613.2024-1016
• Materials science and technology • Previous Articles
LI Dan(
), KONG Chuilong, HU Bo, WANG Shengyan, LIU Dongyan, LIU Lihua(
)
Received:2024-06-24
Revised:2024-08-16
Online:2025-08-04
Published:2025-07-25
Contact:
LIU Lihua
李聃(
), 孔垂龙, 胡博, 王圣燕, 刘冬艳, 刘力华(
)
通讯作者:
刘力华
作者简介:李聃(1993—),女,博士,讲师,研究方向为碳纳米材料。E-mail:chemlidan@163.com。
基金资助:CLC Number:
LI Dan, KONG Chuilong, HU Bo, WANG Shengyan, LIU Dongyan, LIU Lihua. Preparation of phosphorescent carbon nanoparticles powder and its application in the non-fluorescent interference development of latent fingerprints[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4013-4021.
李聃, 孔垂龙, 胡博, 王圣燕, 刘冬艳, 刘力华. 磷光碳纳米粉的制备及其在潜手印无荧光干扰显现中的应用[J]. 化工进展, 2025, 44(7): 4013-4021.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1016
| [13] | WEI Xuyang, YANG Jinwen, HU Lingling, et al. Recent advances in room temperature phosphorescent carbon dots: Preparation, mechanism, and applications[J]. Journal of Materials Chemistry C, 2021, 9(13): 4425-4443. |
| [14] | LI Jiurong, WU Yongzhong, GONG Xiao. Evolution and fabrication of carbon dot-based room temperature phosphorescence materials[J]. Chemical Science, 2023, 14(14): 3705-3729. |
| [15] | LIU Yushan, YANG Haiyue, HUANG Tao, et al. Recent advances of biomass-derived carbon dots with room temperature phosphorescence characteristics[J]. Nano Today, 2024, 56: 102257. |
| [16] | TENG Xiuming, SUN Xiaobo, PAN Wei, et al. Carbon dots confined in silica nanoparticles for triplet-to-singlet Föster resonance energy-transfer-induced delayed fluorescence[J]. ACS Applied Nano Materials, 2022, 5(4): 5168-5175. |
| [17] | ZHANG Xinlei, LIU Xia, LIU Peng, et al. Ultralong afterglow of heavy-atom-free carbon dots with a phosphorescence lifetime of up to 3.7s for encryption and fingerprinting description[J]. Dalton Transactions, 2024, 53(10): 4671-4679. |
| [18] | DING Liu, JIN Xilang, GAO Yuchong, et al. Facile preparation strategy of novel carbon dots with aggregation-induced emission and room-temperature phosphorescence characteristics[J]. Advanced Optical Materials, 2023, 11(5): 2202349. |
| [19] | LI Feng, TANG Long, LIU Yang, et al. Background-free latent fingerprint imaging based on carbonized polymers@silica powder with intense green room-temperature phosphorescence[J]. Optical Materials, 2022, 128: 112356. |
| [20] | WANG Zifei, SHEN Jian, XU Bin, et al. Thermally driven amorphous-crystalline phase transition of carbonized polymer dots for multicolor room-temperature phosphorescence[J]. Advanced Optical Materials, 2021, 9(16): 2100421. |
| [21] | TAO Songyuan, ZHOU Changjiang, KANG Chunyuan, et al. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots[J]. Light, Science & Applications, 2022, 11(1): 56. |
| [22] | LIU Xiaoli, ZHAO Siyu, CHEN Xinrui, et al. The effect of lignin molecular weight on the formation and properties of carbon quantum dots[J]. Green Chemistry, 2024, 26(6): 3190-3201. |
| [23] | JIANG Kai, WANG Yuhui, CAI Congzhong, et al. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications[J]. Advanced Materials, 2018, 30(26): 1800783. |
| [24] | PARK Jin Young, CHUNG Jong Won, YANG Hyun Kyoung. Versatile fluorescent Gd2MoO6: Eu3+ nanophosphor for latent fingerprints and anti-counterfeiting applications[J]. Ceramics International, 2019, 45(9): 11591-11599. |
| [1] | YU Yanlin, YAN Lei, XIA Zhining. Non-toxic luminescent Au nanoclusters@montmorillonite nanocomposites powders for latent fingerprint development[J]. RSC Advances, 2017, 7(79): 50106-50112. |
| [2] | WEI Shuoyun, CUI Xiaohu. Synthesis of gold nanoparticles immobilized on fibrous nano-silica for latent fingerprints detection[J]. Journal of Porous Materials, 2021, 28(3): 751-762. |
| [3] | TIAN Rui, WANG Yalong, LI Chong, et al. Turn-on green fluorescence imaging for latent fingerprint applications[J]. Materials Chemistry Frontiers, 2022, 6(9): 1188-1193. |
| [4] | 金晓东, 毕天博, 辛然, 等. 有机材料在潜指纹显现中的应用研究进展[J]. 有机化学, 2020, 40(12): 4184-4202. |
| JIN Xiaodong, BI Tianbo, XIN Ran, et al. Advances in the application of organic materials for the development of latent fingerprints[J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4184-4202. | |
| [5] | SINGH Shalini, SABRI Ylias M, JAMPAIAH Deshetti, et al. Easy, one-step synthesis of CdTe quantum dots via microwave irradiation for fingerprinting application[J]. Materials Research Bulletin, 2017, 90: 260-265. |
| [6] | COSTA Bianca M F, FREITAS Denilson V, SOUSA Felipe L N, et al. SATS@CdTe hierarchical structures emitting green to red colors developed for latent fingerprint applications[J]. Dyes and Pigments, 2020, 180: 108483. |
| [7] | 刘俊, 张熙荣, 熊焕明. 荧光碳点在指纹检测中的应用[J]. 发光学报, 2021, 42(8): 1095-1113. |
| LIU Jun, ZHANG Xirong, XIONG Huanming. Application of fluorescent carbon dots in fingerprint detection[J]. Chinese Journal of Luminescence, 2021, 42(8): 1095-1113. | |
| [8] | 袁传军, 王猛, 李明, 等. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120. |
| YUAN Chuanjun, WANG Meng, LI Ming, et al. Application of luminescent materials based on carbon dots in development of latent fingerprints[J]. Progress in Chemistry, 2022, 34(9): 2108-2120. | |
| [9] | WANG Meng, SHEN Dunpu, ZHU Zhongxu, et al. Dual-mode fluorescent development of latent fingerprints using NaYbF4: Tm upconversion nanomaterials[J]. Materials Today Advances, 2020, 8: 100113. |
| [10] | KANODARWALA Fehmida K, Adam LEŚNIEWSKI, Izabela OLSZOWSKA-ŁOŚ, et al. Fingermark detection using upconverting nanoparticles and comparison with cyanoacrylate fuming[J]. Forensic Science International, 2021, 326: 110915. |
| [11] | FU Wenjing, CHEN Yanjiao, LIU Kezhen, et al. Nanoscale aluminate-based afterglow materials from byproducts of aluminum-water-based hydrogen production for anticounterfeiting and latent fingerprint visualization[J]. ACS Applied Nano Materials, 2023, 6(24): 22673-22683. |
| [12] | LIU Lin, XIE Feiyan, XU Dekang, et al. Zn2SiO4: Mn2+, Yb3+ long afterglow materials prepared employing Zn-based coordination polymer as precursor: Properties, mechanism and application[J]. Journal of Luminescence, 2023, 255: 119601. |
| [25] | LI Tengfei, WU Chuanguang, YANG Mingsheng, et al. Long-lived color-tunable room-temperature phosphorescence of boron-doped carbon dots[J]. Langmuir, 2022, 38(7): 2287-2293. |
| [26] | QIN Ying, HE Yu, SONG Gongwu. Ultralong room-temperature phosphorescence of boron carbon oxynitride nanodots encapsulated in pyrophosphate in dry and wet states for fingerprint detection and information protection[J]. ACS Applied Nano Materials, 2023, 6(2): 1360-1368. |
| [27] | ZHENG Yan, ZHOU Qian, YANG Yan, et al. Full-color long-lived room temperature phosphorescence in aqueous environment[J]. Small, 2022, 18(19): 2201223. |
| [28] | ZHANG Qipeng, XU Shihao, ZHANG Lanpeng, et al. Multiemitting ultralong phosphorescent carbonized polymer dots via synergistic enhancement structure design[J]. Advanced Science, 2024, 11(18): 2400781. |
| [29] | LI Wei, ZHOU Wan, ZHOU Zhishan, et al. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix[J]. Angewandte Chemie International Edition, 2019, 58(22): 7278-7283. |
| [30] | WANG Zifei, LIU Yang, ZHEN Shijie, et al. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes[J]. Advanced Science, 2020, 7(4): 1902688. |
| [31] | HE Wei, SUN Xiangying, CAO Xuegong. Construction and multifunctional applications of visible-light-excited multicolor long afterglow carbon dots/boron oxide composites[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4477-4486. |
| [32] | ZHOU Zhishan, SONG Zhijian, LIU Jinkun, et al. Energy transfer mediated enhancement of room-temperature phosphorescence of carbon dots embedded in matrixes[J]. Advanced Optical Materials, 2022, 10(1): 2100704. |
| [33] | HAN Bingyan, LEI Xiangshan, LI Dan, et al. Shallow traps in carbon nitride quantum dots to achieve 6.47s ultralong lifetime and wavelength-tunable room temperature phosphorescence[J]. Advanced Optical Materials, 2023, 11(8): 2202293. |
| [34] | JIANG Kai, HU Sizhe, WANG Yuci, et al. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots[J]. Small, 2020, 16(31): 2001909. |
| [1] | DAI Yueming, ZHOU Meifang, SHEN Jianhua, JIANG Haibo, LI Chunzhong. Molecular dynamics simulation of sintering mechanism of TiO2 nanoparticles [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2202-2214. |
| [2] | MAO Ningxuan, WAN Xiaowei, JU Jie, HU Yanjie, JIANG Hao. Numerical simulation and structural optimization of flow field in industrial gas-solid fluidized beds based on CFD-PBM [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 13-20. |
| [3] | SUN Shiwan, LI Xin, ZHOU Han. Review of radiative cooling paint and its applications in the fields of energy and environment [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4961-4969. |
| [4] | CAO Haizhen, WANG Shangbin, OU Hongxiang, XUE Honglai, BI Haipu, WANG Junqi. Effect of hydrophobic ally modified silica on the performance of fluorine-free foam extinguishing agent [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3301-3309. |
| [5] | YANG Jiaqi, JU Xiaojie, XIE Rui, WANG Wei, LIU Zhuang, PAN Dawei, CHU Liangyin. Controllable preparation and properties of photothermal-responsive controlled-release microspheres [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1474-1483. |
| [6] | LIU Bin, WANG Yongjun, LYU Wangyang, CHEN Wenxing. Preparation and application of high stability titanium polyester catalyst TiOC@SiO2 [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1395-1402. |
| [7] | LI Kairui, GAO Zhaohua, LIU Tiantian, LI Jing, WEI Haisheng. Tuning the catalytic performance of Rh/FePO4 catalyst by reduction temperature for quinoline selective hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1342-1349. |
| [8] | LOU Rui, NIU Taoyuan, CAO Qihang, ZHANG Yiyi, LEI Wenqi, LU Congmin, WANG Zhiwei. Preparation and electrochemical performances of in-situ growth of δ-MnO2 on hierarchical porous carbon derived from LNP [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1013-1021. |
| [9] | JU Fang. Fabrication and properties of synergistic antibacterial hydrogels based on the silver-sulfur coordination [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1039-1046. |
| [10] | GAN Yuxin, ZHAO Mei, ZHAO Shaolei, XIE Jiuren, YANG Ling, WANG Tingjie. Reaction characteristics of organic modifications on the surface of oxide nanoparticles [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6233-6245. |
| [11] | WU Yan, LI Bin, JU Mingdong, XIANG Wei, WANG Hai, WANG Zhentao, WANG Junfeng, WANG Zhenbo. Strengthening mechanism of oil droplet displacement under the nano-confined shearing flow field: A molecular dynamics study [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5393-5402. |
| [12] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
| [13] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
| [14] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
| [15] | XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi. Preparation and properties of ZnO QDs water-based inkjet fluorescent ink [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |