| [1] |
NAKAJI Yosuke, TAMURA Masazumi, MIYAOKA Shuhei, et al. Low-temperature catalytic upgrading of waste polyolefinic plastics into liquid fuels and waxes[J]. Applied Catalysis B: Environmental, 2021, 285: 119805.
|
| [2] |
MIRKARIMI S M R, BENSAID S, CHIARAMONTI D. Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review[J]. Applied Energy, 2022, 327: 120040.
|
| [3] |
陈欢, 万坤, 牛波, 等. 废弃塑料化学回收及升级再造研究进展[J]. 化工进展, 2022, 41(3): 1453-1469.
|
|
CHEN Huan, WAN Kun, NIU Bo, et al. Recent progresses in chemical recycling and upcycling of waste plastics[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1453-1469.
|
| [4] |
CHEN Linxiao, MEYER Laura C, KOVARIK Libor, et al. Disordered, sub-nanometer Ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis[J]. ACS Catalysis, 2022, 12(8): 4618-4627.
|
| [5] |
RORRER Julie E, BECKHAM Gregg T, Yuriy ROMÁN-LESHKOV. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions[J]. JACS Au, 2020, 1(1): 8-12.
|
| [6] |
HONG Miao, CHEN Eugene Y X. Future directions for sustainable polymers[J]. Trends in Chemistry, 2019, 1(2): 148-151.
|
| [7] |
AL-SALEM S M, LETTIERI P, BAEYENS J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals[J]. Progress in Energy and Combustion Science, 2010, 36(1): 103-129.
|
| [8] |
WANG Cong, YU Kewei, SHELUDKO Boris, et al. A general strategy and a consolidated mechanism for low-methane hydrogenolysis of polyethylene over ruthenium[J]. Applied Catalysis B: Environmental, 2022, 319: 121899.
|
| [9] |
JIA Chuhua, XIE Shaoqu, ZHANG Wanli, et al. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst[J]. Chem Catalysis, 2021, 1(2): 437-455.
|
| [10] |
CHEN Linxiao, ZHU Yifeng, MEYER Laura C, et al. Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes[J]. Reaction Chemistry & Engineering, 2022, 7(4): 844-854.
|
| [11] |
WANG Cong, XIE Tianjun, KOTS Pavel A, et al. Polyethylene hydrogenolysis at mild conditions over ruthenium on tungstated zirconia[J]. JACS Au, 2021, 1(9): 1422-1434.
|
| [12] |
LEE Wei-Tse, BOBBINK Felix D, VAN MUYDEN Antoine P, et al. Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams[J]. Cell Reports Physical Science, 2021, 2(2): 100332.
|
| [13] |
张健, 黄邦印, 隋志军, 等. 不同Pd/Ag配比Pd-Ag/Al2O3催化乙炔加氢微观反应动力学分析[J]. 化工学报, 2018, 69(2): 674-681.
|
|
ZHANG Jian, HUANG Bangyin, SUI Zhijun, et al. Microkinetic analysis of acetylene hydrogenation over Pd-Ag/Al2O3 catalyst with different Pd/Ag ratios[J]. CIESC Journal, 2018, 69(2): 674-681.
|
| [14] |
梁瑜, 赵彤, 赵斌彬, 等. WO3对Pt/α-Al2O3催化萘深度加氢的促进作用[J]. 化工学报, 2021, 72(11): 5643-5652.
|
|
LIANG Yu, ZHAO Tong, ZHAO Binbin, et al. Promotion of WO3 species on Pt/α-Al2O3 for the deep hydrogenation of naphthalene[J]. CIESC Journal, 2021, 72(11): 5643-5652.
|
| [15] |
MURATA Kazumasa, MAHARA Yuji, OHYAMA Junya, et al. The metal-support interaction concerning the particle size effect of Pd/Al2 O3 on methane combustion[J]. Angewandte Chemie, 2017, 129(50): 16209-16213.
|
| [16] |
LIN Bingyu, HENG Lan, FANG Biyun, et al. Ammonia synthesis activity of alumina-supported ruthenium catalyst enhanced by alumina phase transformation[J]. ACS Catalysis, 2019, 9(3): 1635-1644.
|
| [17] |
VELU Subramani, GANGWAL Santosh K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ionics, 2006, 177(7/8): 803-811.
|
| [18] |
SAKPAL Tushar, LEFFERTS Leon. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation[J]. Journal of Catalysis, 2018, 367: 171-180.
|
| [19] |
CHEN Min, LIU Longgang, CHEN Xueyan, et al. Effects of Ru particle size over TiO2 on the catalytic performance of CO2 hydrogenation[J]. Applied Surface Science, 2024, 654: 159460.
|
| [20] |
CRAWFORD James M, PETEL Brittney E, RASMUSSEN Mathew J, et al. Influence of residual chlorine on Ru/TiO2 active sites during CO2 methanation[J]. Applied Catalysis A: General, 2023, 663: 119292.
|
| [21] |
SUN Min, HU Wei, CHENG Tianqiong, et al. A novel insight into the preparation method of Pd/Ce0.75Zr0.25O2-Al2O3 over high-stability close coupled catalysts[J]. Applied Surface Science, 2019, 467: 723-739.
|
| [22] |
GUO Yu, MEI Sheng, YUAN Kun, et al. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect[J]. ACS Catalysis, 2018, 8(7): 6203-6215.
|
| [23] |
LI Bolong, LI Lulu, ZHAO Chen. A highly stable Ru/LaCO3OH catalyst consisting of support-coated Ru nanoparticles in aqueous-phase hydrogenolysis reactions[J]. Green Chemistry, 2017, 19(22): 5412-5421.
|
| [24] |
TOMER Ajay, ISLAM Mazharul M, BAHRI Mounib, et al. Enhanced production and control of liquid alkanes in the hydrogenolysis of polypropylene over shaped Ru/CeO2 catalysts[J]. Applied Catalysis A: General, 2023, 666: 119431.
|
| [25] |
Sara NAVARRO-JAÉN, SZEGO Anthony, BOBADILLA Luis F, et al. operando spectroscopic evidence of the induced effect of residual species in the reaction intermediates during CO2 hydrogenation over ruthenium nanoparticles[J]. ChemCatChem, 2019, 11(8): 2063-2068.
|
| [26] |
KITANO Masaaki, KANBARA Shinji, INOUE Yasunori, et al. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis[J]. Nature Communications, 2015, 6: 6731.
|
| [27] |
LOGADÓTTIR Á, NØRSKOV J K. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations[J]. Journal of Catalysis, 2003, 220(2): 273-279.
|
| [28] |
Camila FERNÁNDEZ, BION Nicolas, GAIGNEAUX Eric M, et al. Kinetics of hydrogen adsorption and mobility on Ru nanoparticles supported on alumina: Effects on the catalytic mechanism of ammonia synthesis[J]. Journal of Catalysis, 2016, 344: 16-28.
|
| [29] |
ZHU Yiming, KLINGENHOF Malte, GAO Chenlong, et al. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping[J]. Nature Communications, 2024, 15(1): 1447.
|
| [30] |
FLAHERTY David W, UZUN Alper, IGLESIA Enrique. Catalytic ring opening of cycloalkanes on Ir clusters: Alkyl substitution effects on the structure and stability of C-C bond cleavage transition states[J]. The Journal of Physical Chemistry C, 2015, 119(5): 2597-2613.
|
| [31] |
LISOWSKI W, DUŚ R. Adsorption of alkanes and their coadsorption with hydrogen on platinum thin films[J]. Surface Science, 1982, 118(1/2): 208-222.
|
| [32] |
LU Yaowei, WANG Yongxing, WANG Yinghao, et al. Hydrogenation of levulinic acid to γ-valerolactone over bifunctional Ru/(AlO)(ZrO) n catalyst: Effective control of Lewis acidity and surface synergy[J]. Molecular Catalysis, 2020, 493: 111097.
|
| [33] |
WU Peipei, Shuaishuai LYU, TIAN Ye, et al. Identification of active sites for preferential oxidation of CO over Ru/TiO2 catalysts via tuning metal-support interaction[J]. Chemical Engineering Journal, 2023, 475: 146051.
|
| [34] |
Anaëlle PAREDES-NUNEZ, LORITO Davide, BUREL Laurence, et al. CO hydrogenation on cobalt-based catalysts: Tin poisoning unravels CO in hollow sites as a main surface intermediate[J]. Angewandte Chemie, 2018, 130(2): 556-559.
|
| [35] |
KUMI David O, PHAAHLAMOHLAKA Tumelo N, DLAMINI Mbongiseni W, et al. Effect of a titania covering on CNTS as support for the Ru catalysed selective CO methanation[J]. Applied Catalysis B: Environmental, 2018, 232: 492-500.
|