Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (7): 3892-3906.DOI: 10.16085/j.issn.1000-6613.2024-0889
• Industrial catalysis • Previous Articles
Received:2024-06-02
Revised:2024-07-31
Online:2025-08-04
Published:2025-07-25
Contact:
LIU Jiaxu
通讯作者:
刘家旭
作者简介:王惠(2000—),女,硕士研究生,研究方向为工业催化。E-mail:22245196wh@mail.dlut.edu.cn。
基金资助:CLC Number:
WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906.
王惠, 刘家旭. SSZ-39分子筛的合成及其NH3-SCR应用研究进展[J]. 化工进展, 2025, 44(7): 3892-3906.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0889
| 样例 | 硅源 | 铝源 | 有机结构导向剂 | 晶化温度/时间 | 收率/% | 参考文献 |
|---|---|---|---|---|---|---|
| 1 | USY(Si/Al=17) | USY(Si/Al=17) | DEDMPOH | 150℃/7d | 90 | [ |
| 2 | USY(Si/Al=17) | USY(Si/Al=17) | DEDMP+TEP | 150℃/2d | 78 | [ |
| 3 | USY(Si/Al=21) | USY(Si/Al=21) | TEP | 150℃/9d | — | [ |
| 4 | USY(Si/Al=30)+硅酸钠 | USY(Si/Al=30) | DMDMP | 135℃/7d | — | [ |
| 5 | NH4-FAU(Si/Al=2.6)+TEOS | NH4-FAU(Si/Al=2.6) | 顺式/反式DMDMPOH | 140℃/3d | 39 | [ |
| 6 | FAU(Si/Al=10.3)+硅溶胶 | NH4-FAU(Si/Al=10.3) | 顺式/反式DMDMPOH | 160℃/4d | 69 | [ |
| 7 | ZSM-5分子筛(Si/Al=15) | ZSM-5分子筛(Si/Al=15) | DEDMPOH | 140℃/3d | 63 | [ |
| 8 | Beta分子筛(Si/Al=12.5) | Beta分子筛(Si/Al=12.5) | DEDMPOH | 150℃/3d | 68 | [ |
| 9 | X分子筛(Si/Al=1)+硅溶胶 | X分子筛 | DMDMPOH | 150℃/3d | 40 | [ |
| 10 | 硅溶胶 | 铝酸钠 | DEDMPOH | 150℃/3d | 21.3 | [ |
| 11 | 硅溶胶 | 铝酸钠 | TMPOH | 210℃/80min | 29 | [ |
| 样例 | 硅源 | 铝源 | 有机结构导向剂 | 晶化温度/时间 | 收率/% | 参考文献 |
|---|---|---|---|---|---|---|
| 1 | USY(Si/Al=17) | USY(Si/Al=17) | DEDMPOH | 150℃/7d | 90 | [ |
| 2 | USY(Si/Al=17) | USY(Si/Al=17) | DEDMP+TEP | 150℃/2d | 78 | [ |
| 3 | USY(Si/Al=21) | USY(Si/Al=21) | TEP | 150℃/9d | — | [ |
| 4 | USY(Si/Al=30)+硅酸钠 | USY(Si/Al=30) | DMDMP | 135℃/7d | — | [ |
| 5 | NH4-FAU(Si/Al=2.6)+TEOS | NH4-FAU(Si/Al=2.6) | 顺式/反式DMDMPOH | 140℃/3d | 39 | [ |
| 6 | FAU(Si/Al=10.3)+硅溶胶 | NH4-FAU(Si/Al=10.3) | 顺式/反式DMDMPOH | 160℃/4d | 69 | [ |
| 7 | ZSM-5分子筛(Si/Al=15) | ZSM-5分子筛(Si/Al=15) | DEDMPOH | 140℃/3d | 63 | [ |
| 8 | Beta分子筛(Si/Al=12.5) | Beta分子筛(Si/Al=12.5) | DEDMPOH | 150℃/3d | 68 | [ |
| 9 | X分子筛(Si/Al=1)+硅溶胶 | X分子筛 | DMDMPOH | 150℃/3d | 40 | [ |
| 10 | 硅溶胶 | 铝酸钠 | DEDMPOH | 150℃/3d | 21.3 | [ |
| 11 | 硅溶胶 | 铝酸钠 | TMPOH | 210℃/80min | 29 | [ |
| [1] | SIMMEN A, MCCUSKER L B, BAERLOCHER Ch, et al. The structure determination and rietveld refinement of the aluminophosphate AlPO4-18[J]. Zeolites, 1991, 11(7): 654-661. |
| [2] | DUSSELIER Michiel, DAVIS Mark E. Small-pore zeolites: Synthesis and catalysis[J]. Chemical Reviews, 2018, 118(11): 5265-5329. |
| [3] | XU Hao, ZHU Longfeng, WU Qinming, et al. Advances in the synthesis and application of the SSZ-39 zeolite[J]. Inorganic Chemistry Frontiers, 2022, 9(6): 1047-1057. |
| [4] | SHAN Yulong, SHAN Wenpo, SHI Xiaoyan, et al. A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13[J]. Applied Catalysis B: Environmental, 2020, 264: 118511. |
| [5] | ZHU Na, SHAN Yulong, SHAN Wenpo, et al. Distinct NO2 effects on Cu-SSZ-13 and Cu-SSZ-39 in the selective catalytic reduction of NO x with NH3 [J]. Environmental Science & Technology, 2020, 54(23): 15499-15506. |
| [6] | YASHIKI Ayako, HONDA Koutaro, FUJIMOTO Ayumi, et al. Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals[J]. Journal of Crystal Growth, 2011, 325(1): 96-100. |
| [7] | SANO Tsuneji, ITAKURA Masaya, SADAKANE Masahiro. High potential of interzeolite conversion method for zeolite synthesis[J]. Journal of the Japan Petroleum Institute, 2013, 56(4): 183-197. |
| [8] | HONDA Koutaro, ITAKURA Masaya, MATSUURA Yumiko, et al. Role of structural similarity between starting zeolite and product zeolite in the interzeolite conversion process[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(4): 3020-3026. |
| [9] | SONODA Takushi, MARUO Toshihiro, YAMASAKI Yoshitaka, et al. Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NO x with NH3 [J]. Journal of Materials Chemistry A, 2015, 3(2): 857-865. |
| [10] | KAKIUCHI Yutaro, YAMASAKI Yoshitaka, TSUNOJI Nao, et al. One-pot synthesis of phosphorus-modified AEI zeolites derived by the dual-template method as a durable catalyst with enhanced thermal/hydrothermal stability for selective catalytic reduction of NO x by NH3 [J]. Chemistry Letters, 2016, 45(2): 122-124. |
| [11] | Nuria MARTÍN, LI Zhibin, Joaquín MARTÍNEZ-TRIGUERO, et al. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process[J]. Chemical Communications, 2016, 52(36): 6072-6075. |
| [12] | MOLINER Manuel, FRANCH Cristina, PALOMARES Eduardo, et al. Cu-SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NO x [J]. Chemical Communications, 2012, 48(66): 8264-8266. |
| [13] | DUSSELIER Michiel, SCHMIDT Joel E, MOULTON Roger, et al. Influence of organic structure directing agent isomer distribution on the synthesis of SSZ-39[J]. Chemistry of Materials, 2015, 27(7): 2695-2702. |
| [14] | NAKAZAWA Naoto, INAGAKI Satoshi, KUBOTA Yoshihiro. Direct hydrothermal synthesis of high-silica SSZ-39 zeolite with small particle size[J]. Chemistry Letters, 2016, 45(8): 919-921. |
| [15] | 刘中清, 王倩, 赵峰, 等. 一种SSZ-39分子筛及其制备方法和应用: CN112299438A[P]. 2021-02-02. |
| LIU Zhongqing, WANG Qian, ZHAO Feng, et al. A SSZ-39 molecular sieve and its preparation method and application: CN112299438A[P]. 2021-02-02. | |
| [16] | LIU Zhendong, CHOKKALINGAM Anand, MIYAGI Shoko, et al. Revealing scenarios of interzeolite conversion from FAU to AEI through the variation of starting materials[J]. Physical Chemistry Chemical Physics, 2022, 24(7): 4136-4146. |
| [17] | SADA Yuki, CHOKKALINGAM Anand, IYOKI Kenta, et al. Tracking the crystallization behavior of high-silica FAU during AEI-type zeolite synthesis using acid treated FAU-type zeolite[J]. RSC Advances, 2021, 11(37): 23082-23089. |
| [18] | XU Hao, CHEN Wei, WU Qinming, et al. Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite[J]. Journal of Materials Chemistry A, 2019, 7(9): 4420-4425. |
| [19] | ZHANG Juan, CHU Yueying, DENG Feng, et al. Evolution of D6R units in the interzeolite transformation from FAU, MFI or *BEA into AEI: Transfer or reassembly?[J]. Inorganic Chemistry Frontiers, 2020, 7(11): 2204-2211. |
| [20] | 刘家旭, 刘港. 一种以X分子筛为原料制备SSZ-39分子筛的方法和应用: CN116040646A[P]. 2023-05-02. |
| LIU Jiaxu, LIU Gang. A method and application of preparing SSZ-39 zeolite from X zeolite: CN116040646A[P]. 2023-05-02. | |
| [21] | 刘港. SSZ-39分子筛的转晶合成及其NH3-SCR反应性能研究[D]. 大连: 大连理工大学, 2023. |
| LIU Gang. Synthesis of SSZ-39 by inter-zeolite transformation and its performance in NH3-selective catalytic reduction[D]. Dalian: Dalian University of Technology, 2023. | |
| [22] | BARRER R M. 435. Syntheses and reactions of mordenite[J]. Journal of the Chemical Society (Resumed), 1948: 2158-2163. |
| [23] | XU Hao, ZHANG Juan, WU Qinming, et al. Direct synthesis of aluminosilicate SSZ-39 zeolite using colloidal silica as a starting source[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23112-23117. |
| [24] | TSUNOJI Nao, SHIMONO Daigo, TSUCHIYA Kazuyoshi, et al. Formation pathway of AEI zeolites as a basis for a streamlined synthesis[J]. Chemistry of Materials, 2020, 32(1): 60-74. |
| [25] | JOICHI Yoko, SHIMONO Daigo, TSUNOJI Nao, et al. Stepwise gel preparation for high-quality CHA zeolite synthesis: A common tool for synthesis diversification[J]. Crystal Growth & Design, 2018, 18(9): 5652-5662. |
| [26] | MENG Xiangju, WU Qinming, CHEN Fang, et al. Solvent-free synthesis of zeolite catalysts[J]. Science China Chemistry, 2015, 58(1): 6-13. |
| [27] | WU Qinming, LIU Xiaolong, ZHU Longfeng, et al. Solvent-free synthesis of zeolites from anhydrous starting raw solids[J]. Journal of the American Chemical Society, 2015, 137(3): 1052-1055. |
| [28] | WU Qinming, LIU Xiaolong, ZHU Longfeng, et al. Solvent-free synthesis of zeolites from anhydrous starting raw solids[J]. Journal of the American Chemical Society, 2015, 137(3): 1052-1055. |
| [29] | REN Limin, WU Qinming, YANG Chengguang, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176. |
| [30] | HU Peidong, IYOKI Kenta, FUJINUMA Haruko, et al. Broadening synthetic scope of SSZ-39 zeolite for NH3-SCR: A fast and direct route from amorphous starting materials[J]. Microporous and Mesoporous Materials, 2022, 330: 111583. |
| [31] | XU Hao, ZHU Jie, QIAO Jun, et al. Solvent-free synthesis of aluminosilicate SSZ-39 zeolite[J]. Microporous and Mesoporous Materials, 2021, 312: 110376. |
| [32] | LIU Zhendong, WAKIHARA Toru, NISHIOKA Daisuke, et al. One-minute synthesis of crystalline microporous aluminophosphate (AlPO4-5) by combining fast heating with a seed-assisted method[J]. Chemical Communications, 2014, 50(19): 2526-2528. |
| [33] | MAJANO Gerardo, DELMOTTE Luc, VALTCHEV Valentin, et al. Al-rich zeolite beta by seeding in the absence of organic template[J]. Chemistry of Materials, 2009, 21(18): 4184-4191. |
| [34] | IYOKI Kenta, ITABASHI Keiji, OKUBO Tatsuya. Seed-assisted, one-pot synthesis of hollow zeolite beta without using organic structure-directing agents[J]. Chemistry—An Asian Journal, 2013, 8(7): 1419-1427. |
| [35] | XIE Bin, SONG Jiangwei, REN Limin, et al. Organotemplate-free and fast route for synthesizing beta zeolite[J]. Chemistry of Materials, 2008, 20(14): 4533-4535. |
| [36] | XIE Bin, ZHANG Haiyan, YANG Chengguang, et al. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates[J]. Chemical Communications, 2011, 47(13): 3945-3947. |
| [37] | KAMIMURA Yoshihiro, TANAHASHI Shinya, ITABASHI Keiji, et al. Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis[J]. The Journal of Physical Chemistry C, 2011, 115(3): 744-750. |
| [38] | 闫文付, 徐天昊, 白璞, 等. 一种SSZ-39分子筛的制备方法: CN113307283A[P]. 2021-08-27. |
| YAN Wenfu, Xu Tianhao, Bai Pu, et al. A preparation method of SSZ-39 zeolite: CN113307283A[P]. 2021-08-27. | |
| [39] | HAN Lupeng, CAI Sixiang, GAO Min, et al. Selective catalytic reduction of NO x with NH3 by using novel catalysts: State of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
| [40] | YUAN Yuheng, GUAN Bin, CHEN Junyan, et al. Research status and outlook of molecular sieve NH3-SCR catalysts[J]. Molecular Catalysis, 2024, 554: 113846. |
| [41] | SHI Zhiwei, PENG Qingguo, Jiaqiang E, et al. Mechanism, performance and modification methods for NH3-SCR catalysts: A review[J]. Fuel, 2023, 331: 125885. |
| [42] | SUN Xiaoyi, LIU Qingjie, LIU Shuai, et al. Improvement of low-temperature NH3-SCR catalytic performance over nitrogen-doped MO x -Cr2O3-La2O3/TiO2-N (M = Cu, Fe, Ce) catalysts[J]. RSC Advances, 2021, 11(37): 22780-22788. |
| [43] | LONG Shanghai, XU Li, LIU Guoji. Preparation and modification of heterogeneous vanadium-titanium-based catalysts[J]. Russian Journal of General Chemistry, 2021, 91(3): 464-487. |
| [44] | HE Chongheng, WANG Yuhe, CHENG Yisun, et al. Activity, stability and hydrocarbon deactivation of Fe/Beta catalyst for SCR of NO with ammonia[J]. Applied Catalysis A: General, 2009, 368(1/2): 121-126. |
| [45] | KWAK Ja Hun, TONKYN Russell G, KIM Do Heui, et al. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NO x with NH3 [J]. Journal of Catalysis, 2010, 275(2): 187-190. |
| [46] | PAOLUCCI Christopher, PAREKH Atish A, KHURANA Ishant, et al. Catalysis in a cage: Condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites[J]. Journal of the American Chemical Society, 2016, 138(18): 6028-6048. |
| [47] | SONG James, WANG Yilin, WALTER Eric D, et al. Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability[J]. ACS Catalysis, 2017, 7(12): 8214-8227. |
| [48] | GAO Feng, MEI Donghai, WANG Yilin, et al. Selective catalytic reduction over Cu/SSZ-13: Linking homo- and heterogeneous catalysis[J]. Journal of the American Chemical Society, 2017, 139(13): 4935-4942. |
| [49] | RUGGERI Maria Pia, NOVA Isabella, TRONCONI Enrico, et al. In-situ DRIFTS measurements for the mechanistic study of NO oxidation over a commercial Cu-CHA catalyst[J]. Applied Catalysis B: Environmental, 2015, 166: 181-192. |
| [50] | DU Jinpeng, SHAN Yulong, SUN Yu, et al. Unexpected increase in low-temperature NH3-SCR catalytic activity over Cu-SSZ-39 after hydrothermal aging[J]. Applied Catalysis B: Environmental, 2021, 294: 120237. |
| [51] | CHENG Haodan, TANG Xiaolong, YI Honghong, et al. Application progress of small-pore zeolites in purifying NO x from motor vehicle exhaust[J]. Chemical Engineering Journal, 2022, 449: 137795. |
| [52] | BEALE A M, GAO F, LEZCANO-GONZALEZ I, et al. Recent advances in automotive catalysis for NO x emission control by small-pore microporous materials[J]. Chemical Society Reviews, 2015, 44(20): 7371-7405. |
| [53] | ALBARRACIN-CABALLERO Jonatan D, KHURANA Ishant, DI IORIO John R, et al. Structural and kinetic changes to small-pore Cu-zeolites after hydrothermal aging treatments and selective catalytic reduction of NO x with ammonia[J]. Reaction Chemistry & Engineering, 2017, 2(2): 168-179. |
| [54] | GAO Feng, WALTER Eric D, KARP Eric M, et al. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. Journal of Catalysis, 2013, 300: 20-29. |
| [55] | SHAN Yulong, SHI Xiaoyan, DU Jinpeng, et al. Cu-exchanged RTH-type zeolites for NH3-selective catalytic reduction of NO x : Cu distribution and hydrothermal stability[J]. Catalysis Science & Technology, 2019, 9(1): 106-115. |
| [56] | Nuria MARTÍN, BORUNTEA Cristian R, MOLINER Manuel, et al. Efficient synthesis of the Cu-SSZ-39 catalyst for DeNO x applications[J]. Chemical Communications, 2015, 51(55): 11030-11033. |
| [57] | MARUO Toshihiro, YAMANAKA Naoki, TSUNOJI Nao, et al. Facile synthesis of AEI zeolites by hydrothermal conversion of FAU zeolites in the presence of tetraethylphosphonium cations[J]. Chemistry Letters, 2014, 43(3): 302-304. |
| [58] | LIN Qingjin, XU Shuhao, ZHAO Hongyan, et al. Highlights on key roles of Y on the hydrothermal stability at 900℃ of Cu/SSZ-39 for NH3-SCR[J]. ACS Catalysis, 2022, 12(22): 14026-14039. |
| [59] | WANG Yao, LI Junhua, LIU Zhiming. Selective catalytic reduction of NO x by NH3 over Cu-AEI zeolite catalyst: Current status and future perspectives[J]. Applied Catalysis B: Environmental, 2024, 343: 123479. |
| [60] | WANG Juan, WANG Linying, ZHU Dali, et al. One-pot synthesis of Na+-free Cu-SSZ-13 and its application in the NH3-SCR reaction[J]. Chemical Communications, 2021, 57(40): 4898-4901. |
| [61] | JIANG Han, GUAN Bin, LIN He, et al. Cu/SSZ-13 zeolites prepared by in situ hydrothermal synthesis method as NH3-SCR catalysts: Influence of the Si/Al ratio on the activity and hydrothermal properties[J]. Fuel, 2019, 255: 115587. |
| [62] | 贺泓, 杜金鹏, 单玉龙, 等. 一种Cu-SSZ-39分子筛及其制备方法和用途: CN110467200B[P]. 2021-08-27. |
| HE Hong, DU Jinpeng, SHAN Yulong, et al. A preparation method and use of SSZ-39 zeolite: CN110467200B[P]. 2021-08-27. | |
| [63] | DU Jinpeng, TANG Xiaomin, HUANG Chi, et al. Facile one-pot synthesis of Cu-SSZ-39 catalysts with excellent catalytic performance in NH3-SCR reaction[J]. Applied Catalysis B: Environment and Energy, 2024, 356: 124258. |
| [64] | DU Jinpeng, WANG Jingyi, SHAN Yulong, et al. Promoted NH3-SCR activity and hydrothermal stability of Cu-SSZ-50 catalyst synthesized by one-pot method[J]. Chinese Chemical Letters, 2024, 35(3): 108781. |
| [65] | SHAN Yulong, DU Jinpeng, YU Yunbo, et al. Precise control of post-treatment significantly increases hydrothermal stability of in situ synthesized Cu-zeolites for NH3-SCR reaction[J]. Applied Catalysis B: Environmental, 2020, 266: 118655. |
| [66] | WANG Aiyong, XIE Kunpeng, BERNIN Diana, et al. Deactivation mechanism of Cu active sites in Cu/SSZ-13—Phosphorus poisoning and the effect of hydrothermal aging[J]. Applied Catalysis B: Environmental, 2020, 269: 118781. |
| [67] | ZHU Na, SHAN Yulong, SHAN Wenpo, et al. Reaction pathways of standard and fast selective catalytic reduction over Cu-SSZ-39[J]. Environmental Science & Technology, 2021, 55(23): 16175-16183. |
| [68] | FU Guangying, YANG Runnong, LIANG Yuqian, et al. Enhanced hydrothermal stability of Cu/SSZ-39 with increasing Cu contents, and the mechanism of selective catalytic reduction of NO x [J]. Microporous and Mesoporous Materials, 2021, 320: 111060. |
| [69] | REN Limin, ZHANG Yibo, ZENG Shangjing, et al. Design and synthesis of a catalytically active Cu-SSZ-13 zeolite from a copper-amine complex template[J]. Chinese Journal of Catalysis, 2012, 33(1): 92-105. |
| [70] | WANG Yao, LI Ganggang, ZHANG Shaoqing, et al. Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: Activity, hydrothermal stability, and mechanism study[J]. Chemical Engineering Journal, 2020, 393: 124782. |
| [71] | SONG Chaoming, ZHANG Lihong, LI Zhenguo, et al. Co-exchange of Mn: A simple method to improve both the hydrothermal stability and activity of Cu-SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9(5): 455. |
| [72] | BIAN Chaoqun, LUO Xiaohui, CHEN Xiao, et al. One-pot synthesis of Ce-SSZ-39 zeolite with performance in the NH3-SCR reaction[J]. Inorganic Chemistry, 2024, 63(23): 10798-10808. |
| [73] | YU Rui, KONG Haiyu, ZHAO Zhenchao, et al. Rare-earth yttrium exchanged Cu-SSZ-39 zeolite with superior hydrothermal stability and SO2-tolerance in NH3-SCR of NO x [J]. ChemCatChem, 2022, 14(10): e202200228. |
| [74] | CHEN Junlin, SHAN Yulong, SUN Yu, et al. Hydrothermal aging alleviates the phosphorus poisoning of Cu-SSZ-39 catalysts for NH3-SCR reaction[J]. Environmental Science & Technology, 2023, 57(10): 4113-4121. |
| [75] | ZHAO Minru, WANG Yanhua, QI Xiaotong, et al. Rapid synthesis of Cu-SSZ-39 and study of phosphorus poisoning in NH3-SCR[J]. Fuel, 2024, 361: 130715. |
| [76] | ZHU Na, SHAN Wenpo, SHAN Yulong, et al. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO x with NH3 [J]. Chemical Engineering Journal, 2020, 388: 124250. |
| [1] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [2] | XU Jingdong, LIU Ben, WANG Xueqin, DONG Peng, XI Zhixiang, XU Renwei, YUE Yuanyuan. Green synthesis and NH3-SCR performance of FeCu-ZSM-5 zeolite [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3017-3030. |
| [3] | LIU Yongbing, WANG Yajun, GU Ping, ZHANG Yongmin, GUO Huaiyong, LIU Kai. A review on multiphase separation researches in slurry bed reactors [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3345-3363. |
| [4] | FAN Xiaoya, ZHAO Zhen, PENG Qiang. Review on electrocatalytic co-reduction of carbon dioxide and nitrate for urea synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2856-2869. |
| [5] | WANG Ke, HU Deng, WANG Xingbo, SUN Nannan, WEI Wei. Using Fe x Co y Ca3Al dual-functional material on integrated CO2 capture and conversion to syngas [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2888-2897. |
| [6] | LIU Wei, HOU Xuelan, YANG Guidong. Green hydrogen-ammonia cycle: Current status and perspective [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2625-2641. |
| [7] | ZHANG Maorun, SUN Weiru, MA Tianlin, XIN Zhiling. Anti-SO2 poisoning performance of Mo-modified MnCe/SiC in low-temperature SCR denitrification [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1378-1386. |
| [8] | TAO Jinquan, JIA Yijing, BAI Tianyu, YAO Rongpeng, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Synthesis and catalytic MTP performance of Silicalite-1 zeolite with low cost [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1550-1558. |
| [9] | SU Liangjian, XIAO Junyan, ZHANG Chunguang, ZHAO Yuansheng, YANG Xu. Deep regeneration of fixed-bed HDCCR catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 728-734. |
| [10] | WANG Zijian, LI Jiahan, LI Shuting, YAN Shijuan, SUN Jinru, TONG Yanbing, ZHENG Jiashuo, PENG Yunlei, SONG Zhaozheng, KE Ming. Research progress in the synthesis and application of lamellar mordenite [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 847-855. |
| [11] | ZHANG Xiaofang, GAN Wen, JI Zhijiao, XU Ming, LI Chufu, HE Guangli. Present situation and strategy of electrolytes for electrochemical nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 809-819. |
| [12] | QIAO Lei, ZHANG Yaxin, WEI Bo, RAN Wenshen, MA Jingrong, WANG Feng. Optimization of burner layout parameters and operating parameters of oxy-thermal entrained-flow calcium carbide reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 145-157. |
| [13] | LI Xinyue, LI Zhenjing, HAN Yihang, GUO Yongqiang, YAN Yu, KAREMULATI Halimire, ZHAO Huiji, CHAI Yongming, LIU Dong, YIN Changlong. Research progress on catalysts for the production of green diesel by hydrodeoxidation of lipid [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 351-364. |
| [14] | CHEN Gaoxiang, WANG Rongchang, JIANG Jiacheng. Mechanism of cathodic electron transfer and hydrogen–mediated enhanced measures in microbial electrosynthesis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 504-516. |
| [15] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |
