Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2888-2897.DOI: 10.16085/j.issn.1000-6613.2024-1845
• CO2 emission reduction and utilization • Previous Articles
WANG Ke1,2(
), HU Deng1, WANG Xingbo1,2, SUN Nannan1,2(
), WEI Wei1,2(
)
Received:2024-11-11
Revised:2024-12-31
Online:2025-05-20
Published:2025-05-25
Contact:
SUN Nannan, WEI Wei
汪柯1,2(
), 胡登1, 王星博1,2, 孙楠楠1,2(
), 魏伟1,2(
)
通讯作者:
孙楠楠,魏伟
作者简介:汪柯(2000—),女,博士研究生,研究方向为CO2捕集-转化一体化制合成气。E-mail:wangke@sari.ac.cn。
基金资助:CLC Number:
WANG Ke, HU Deng, WANG Xingbo, SUN Nannan, WEI Wei. Using Fe x Co y Ca3Al dual-functional material on integrated CO2 capture and conversion to syngas[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2888-2897.
汪柯, 胡登, 王星博, 孙楠楠, 魏伟. Fe x Co y Ca3Al双功能材料用于CO2捕集-转化一体化制合成气[J]. 化工进展, 2025, 44(5): 2888-2897.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1845
| 双功能材料 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 平均孔径 /nm |
|---|---|---|---|
| Co1Ca3Al | 6.0 | 0.024 | 2.58 |
| Fe0.25Co0.75Ca3Al | 6.0 | 0.023 | 2.32 |
| Fe0.5Co0.5Ca3Al | 4.7 | 0.021 | 3.16 |
| Fe0.75Co0.25Ca3Al | 3.5 | 0.007 | 2.32 |
| Fe1Ca3Al | 6.6 | 0.018 | 3.90 |
| 双功能材料 | 比表面积 /m2·g-1 | 孔容 /cm3·g-1 | 平均孔径 /nm |
|---|---|---|---|
| Co1Ca3Al | 6.0 | 0.024 | 2.58 |
| Fe0.25Co0.75Ca3Al | 6.0 | 0.023 | 2.32 |
| Fe0.5Co0.5Ca3Al | 4.7 | 0.021 | 3.16 |
| Fe0.75Co0.25Ca3Al | 3.5 | 0.007 | 2.32 |
| Fe1Ca3Al | 6.6 | 0.018 | 3.90 |
| 双功能材料 | 元素质量分数/% | ||
|---|---|---|---|
| Ca | Fe | Co | |
| Co1Ca3Al | 53.57 | 0.01 | 14.66 |
| Fe0.25Co0.75Ca3Al | 58.24 | 2.93 | 7.96 |
| Fe0.5Co0.5Ca3Al | 57.76 | 6.51 | 6.29 |
| Fe0.75Co0.25Ca3Al | 58.24 | 9.51 | 3.18 |
| Fe1Ca3Al | 56.26 | 14.73 | 0.02 |
| 双功能材料 | 元素质量分数/% | ||
|---|---|---|---|
| Ca | Fe | Co | |
| Co1Ca3Al | 53.57 | 0.01 | 14.66 |
| Fe0.25Co0.75Ca3Al | 58.24 | 2.93 | 7.96 |
| Fe0.5Co0.5Ca3Al | 57.76 | 6.51 | 6.29 |
| Fe0.75Co0.25Ca3Al | 58.24 | 9.51 | 3.18 |
| Fe1Ca3Al | 56.26 | 14.73 | 0.02 |
| 双功能材料 | 吸附总量/mmol∙g-1 |
|---|---|
| Co1Ca3Al | 10.27 |
| Fe0.25Co0.75Ca3Al | 10.91 |
| Fe0.5Co0.5Ca3Al | 11.42 |
| Fe0.75Co0.25Ca3Al | 10.81 |
| Fe1Ca3Al | 9.33 |
| 双功能材料 | 吸附总量/mmol∙g-1 |
|---|---|
| Co1Ca3Al | 10.27 |
| Fe0.25Co0.75Ca3Al | 10.91 |
| Fe0.5Co0.5Ca3Al | 11.42 |
| Fe0.75Co0.25Ca3Al | 10.81 |
| Fe1Ca3Al | 9.33 |
| 1 | D’ALESSANDRO Deanna M, SMIT Berend, LONG Jeffrey R. Carbon dioxide capture: Prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082. |
| 2 | GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
| 3 | 胡登, 王星博, 陈新庆, 等. 二氧化碳捕集-转化一体化技术研究进展[J]. 科学通报, 2024, 69(8): 1012-1024. |
| HU Deng, WANG Xingbo, CHEN Xinqing, et al. Research status and prospects on integrated carbon capture and conversion[J]. Chinese Science Bulletin, 2024, 69(8): 1012-1024. | |
| 4 | SHAO Bin, ZHANG Yun, SUN Zheyi, et al. CO2 capture and in situ conversion: Recent progresses and perspectives[J]. Green Chemical Engineering, 2022, 3(3): 189-198. |
| 5 | SUN Shuzhuang, SUN Hongman, WILLIAMS Paul T, et al. Recent advances in integrated CO2 capture and utilization: A review[J]. Sustainable Energy & Fuels, 2021, 5(18): 4546-4559. |
| 6 | DING Yi, JIAO Feng, PAN Xiulian, et al. Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins[J]. ACS Catalysis, 2021, 11(15): 9729-9737. |
| 7 | WU Ke, ZHANG Zhenxuan, SHAN Ruoting, et al. Encapsulating Fischer-Tropsch synthesis catalyst with porous graphite-carbon enables ultrahigh activity for syngas to α-olefins[J]. Applied Catalysis B: Environment and Energy, 2024, 353: 124067. |
| 8 | ZHAO Bo, ZHAI Peng, WANG Pengfei, et al. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem, 2017, 3(2): 323-333. |
| 9 | YANG Junhao, GONG Ke, MIAO Dengyun, et al. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion[J]. Journal of Energy Chemistry, 2019, 35: 44-48. |
| 10 | MA Yuchun, GE Qingjie, LI Wenzhao, et al. Methanol synthesis from sulfur-containing syngas over Pd/CeO2 catalyst[J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 99-104. |
| 11 | GUO Yongle, FENG Lu, LIU Yuefeng, et al. Cu-embedded porous Al2O3 bifunctional catalyst derived from metal-organic framework for syngas-to-dimethyl ether[J]. Chinese Chemical Letters, 2022, 33(6): 2906-2910. |
| 12 | ZHOU Yuqi, MA Xiaoling, YUSANJAN Qogluk, et al. Active metal-free CaO-based dual-function materials for integrated CO2 capture and reverse water-gas shift[J]. Chemical Engineering Journal, 2024, 485: 149937. |
| 13 | KHOBRAGADE Murnal, MAJHI Sachchit, PANT K K. Effect of K and CeO2 promoters on the activity of Co/SiO2 catalyst for liquid fuel production from syngas[J]. Applied Energy, 2012, 94: 385-394. |
| 14 | NI Youming, WANG Kunyuan, ZHU Wenliang, et al. Realizing high conversion of syngas to gasoline-range liquid hydrocarbons on a dual-bed-mode catalyst[J]. Chem Catalysis, 2021, 1(2): 383-392. |
| 15 | GUO Yafei, WANG Guodong, YU Jun, et al. Tailoring the performance of Ni-CaO dual function materials for integrated CO2 capture and conversion by doping transition metal oxides[J]. Separation and Purification Technology, 2023, 305: 122455. |
| 16 | HU Yong, XU Qian, SHENG Yao, et al. The effect of alkali metals (Li, Na, and K) on Ni/CaO dual-functional materials for integrated CO2 capture and hydrogenation[J]. Materials, 2023, 16(15): 5430. |
| 17 | OMODOLOR Ibeh S, OTOR Hope O, ANDONEGUI Joseph A, et al. Dual-function materials for CO2 capture and conversion: A review[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17612-17631. |
| 18 | FLORIN Nicholas H, HARRIS Andrew T. Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles[J]. Chemical Engineering Science, 2009, 64(2): 187-191. |
| 19 | SUN H, WU C, SHEN B, et al. Progress in the development and application of CaO-based adsorbents for CO2 capture—a review[J]. Materials Today Sustainability, 2018, 1: 1-27. |
| 20 | ZHOU Zhiming, QI Yang, XIE Miaomiao, et al. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance[J]. Chemical Engineering Science, 2012, 74: 172-180. |
| 21 | JING Jieying, LI Tingyu, ZHANG Xuewei, et al. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Applied Energy, 2017, 199: 225-233. |
| 22 | BRODA Marcin, KIERZKOWSKA Agnieszka M, MÜLLER Christoph R. Influence of the calcination and carbonation conditions on the CO2 uptake of synthetic Ca-based CO2 sorbents[J]. Environmental Science & Technology, 2012, 46(19): 10849-10856. |
| 23 | MA Xingyue, LUO Shuxuan, HUA Yunhui, et al. An alumina phase induced composite transition shuttle to stabilize carbon capture cycles[J]. Nature Communications, 2024, 15(1): 7556. |
| 24 | SUN Hongman, WANG Jianqiao, ZHAO Jinhui, et al. Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion[J]. Applied Catalysis B: Environmental, 2019, 244: 63-75. |
| 25 | SHAO Bin, HU Guihua, ALKEBSI Khalil A M, et al. Heterojunction-redox catalysts of Fe x Co y Mg10CaO for high-temperature CO2 capture and in situ conversion in the context of green manufacturing[J]. Energy & Environmental Science, 2021, 14(4): 2291-2301. |
| 26 | GAO Zhuxian, YUAN Yongning, YANG Panpan, et al. In situ capture and conversion of CO2 to CO using CaZrO3 promoted Fe-CaO dual-functional material[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(29): 10933-10946. |
| 27 | SUN Shuzhuang, ZHANG Chen, CHEN Sining, et al. Integrated CO2 capture and reverse water-gas shift reaction over CeO2-CaO dual functional materials[J]. Royal Society Open Science, 2023, 10(4): 230067. |
| 28 | LIU Jiming, ZHANG Jinhong, SUN Haoyang, et al. Ultrastable bifunctional multi-stage active metal catalysts for low concentration CO2 capture and in situ conversion[J]. Fuel, 2024, 357: 129801. |
| 29 | ZHAO Peipei, MA Bing, TIAN Jingqing, et al. Highly stable FeNiMnCaO catalyst for integrated CO2 capture and hydrogenation to CO[J]. Chemical Engineering Journal, 2024, 482: 148948. |
| 30 | ZHANG Xiao, ZHU Xiaobing, LIN Lili, et al. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction[J]. ACS Catalysis, 2017, 7(1): 912-918. |
| 31 | LEE Yeol-Lim, KIM Beom-Jun, PARK Ho-Ryong, et al. Customized Ni-MgO-Al2O3 catalyst for carbon dioxide reforming of coke oven gas: Optimization of preparation method and co-precipitation pH[J]. Journal of CO2 Utilization, 2020, 42: 101354. |
| 32 | CHEN Liwei, ZUO Xu, ZHOU Liang, et al. Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism[J]. Chemical Engineering Journal, 2018, 345: 364-374. |
| 33 | LONG Xinxin, YANG Shengjiong, QIU Xiaojie, et al. Heterogeneous activation of peroxymonosulfate for bisphenol A degradation using CoFe2O4 derived by hybrid cobalt-ion hexacyanoferrate nanoparticles[J]. Chemical Engineering Journal, 2021, 404: 127052. |
| 34 | TAN Ye, LI Chunquan, SUN Zhiming, et al. Natural diatomite mediated spherically monodispersed CoFe2O4 nanoparticles for efficient catalytic oxidation of bisphenol A through activating peroxymonosulfate[J]. Chemical Engineering Journal, 2020, 388: 124386. |
| 35 | LI Meng, LI Yanwen, YU Pengfei, et al. Exploring degradation mechanism of tetracycline via high-effective peroxymonosulfate catalysts of montmorillonite hybridized CoFe composites and safety assessment[J]. Chemical Engineering Journal, 2022, 427: 130930. |
| 36 | ZHU Shijun, WANG Zhiwei, YE Cheng, et al. Magnetic Co/Fe nanocomposites derived from ferric sludge as an efficient peroxymonosulfate catalyst for ciprofloxacin degradation[J]. Chemical Engineering Journal, 2022, 432: 134180. |
| 37 | ZENG Liangpeng, LI Kongzhai, HUANG Fan, et al. Effects of Co3O4 nanocatalyst morphology on CO oxidation: Synthesis process map and catalytic activity[J]. Chinese Journal of Catalysis, 2016, 37(6): 908-922. |
| 38 | HAVE Iris C TEN, KROMWIJK Josepha J G, MONAI Matteo, et al. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation[J]. Nature Communications, 2022, 13(1): 324. |
| [1] | FAN Xiaoya, ZHAO Zhen, PENG Qiang. Review on electrocatalytic co-reduction of carbon dioxide and nitrate for urea synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2856-2869. |
| [2] | SU Junjie, LIU Su, ZHOU Haibo, LIU Chang, ZHANG Lin, WANG Yangdong, XIE Zaiku. InZr/SAPO-34 bifunctional catalyst for direct production of light olefins from CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2870-2878. |
| [3] | DING Ajing, ZHOU Qiaoqiao, GU Xuehong. Catalytic gasification of poplar wood in a membrane reactor to produce clean syngas [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2716-2723. |
| [4] | HE Zhiyong. Catalyst evolved by stepwise dehydroxylation/decarbonization method achieves efficient methanol decomposition to produce hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2724-2732. |
| [5] | WANG Shuyuan, YIN Lingling, GAO Zhihua, HUANG Wei. Effect of intercalated Cu proportion on the structure and catalytic performance of CuZnAl-LDHs catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2036-2044. |
| [6] | ZHANG Yiru, HAN Dongmei, MA Weifang. Research progress on iron-based composite bismuth oxyhalide magnetic materials for enhanced visible light catalytic treatment of refractory organic wastewater [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2258-2273. |
| [7] | LIU Jiangtao, PENG Chong, ZHANG Yongchun. Low-carbon olefins from CO2 hydrogenation over Zn-modulated Fe-based catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1396-1405. |
| [8] | CHEN Yuhang, LI Qiaoyan, LIANG Meisheng, SONG Tianyuan, WANG Yue, LI Simeng, ZHOU Yuxuan. Role of the Sn dopant on Cu/CeZrO2/γ-Al2O3 three-way catalyst: Enhancement of low-temperature activity and sulfur resistance [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1368-1377. |
| [9] | ZHANG Xin’er, PEI Liujun, ZHOU Yudie, JIN Kaili, WANG Jiping. Progress of TiO2-based photocatalysts for hydrogen production by water splitting with solar energy [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1298-1308. |
| [10] | LIU Junjie, WU Jianmin, SUN Qiwen, WANG Jiancheng, SUN Yan. Research of metallocene catalysts for linear α-olefins polymerization to obtain high molecular weight products [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1309-1322. |
| [11] | ZHU Guoyu, GE Qi, FU Mingli. Durability testing and life prediction of methanol reforming catalysts for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1338-1346. |
| [12] | XIE Xinyao, WAN Fen, FU Xuanyu, FAN Yuting, CHEN Lingxiu, LI Peng. Catalytic performance and mechanism of CO2 electroreduction of Cu-Ag nanoclusters [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1387-1395. |
| [13] | ZUO Ji, LUO Li, XIE Yongkai, CHEN Wenyao, QIAN Gang, ZHOU Xinggui, DUAN Xuezhi. Effect of Cu catalyst particle size on methanol nonoxidative dehydrogenation to formaldehyde [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1347-1354. |
| [14] | BI Wentao, WANG Xuelin, QU Wei, WANG Congxin, TIAN Zhijian. Effect of Mg-modification on the catalytic performance of Pt/ZSM-22 with low Pt content in n-alkane hydroisomerization [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1355-1367. |
| [15] | ZHANG Maorun, SUN Weiru, MA Tianlin, XIN Zhiling. Anti-SO2 poisoning performance of Mo-modified MnCe/SiC in low-temperature SCR denitrification [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1378-1386. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |