Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2888-2897.DOI: 10.16085/j.issn.1000-6613.2024-1845

• CO2 emission reduction and utilization • Previous Articles    

Using Fe x Co y Ca3Al dual-functional material on integrated CO2 capture and conversion to syngas

WANG Ke1,2(), HU Deng1, WANG Xingbo1,2, SUN Nannan1,2(), WEI Wei1,2()   

  1. 1.Photon Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-11-11 Revised:2024-12-31 Online:2025-05-20 Published:2025-05-25
  • Contact: SUN Nannan, WEI Wei

Fe x Co y Ca3Al双功能材料用于CO2捕集-转化一体化制合成气

汪柯1,2(), 胡登1, 王星博1,2, 孙楠楠1,2(), 魏伟1,2()   

  1. 1.中国科学院上海高等研究院二氧化碳光子科学建制化研究中心,上海 201210
    2.中国科学院大学,北京 100049
  • 通讯作者: 孙楠楠,魏伟
  • 作者简介:汪柯(2000—),女,博士研究生,研究方向为CO2捕集-转化一体化制合成气。E-mail:wangke@sari.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(XDA29040900);上海市2021年度“科技创新行动计划”科技支撑碳达峰碳中和专项(21DZ1207000)

Abstract:

The massive emission of CO2 is one of the primary reasons behind global warming. CO2 capture, utilization and storage (CCUS) technology stands as a pivotal means to reduce CO2 emissions. However, the high capture costs in CCUS technology limit its widespread application. This study employed an Integrated Carbon Capture and Conversion (ICCC) technology, which coupled the capture process with the conversion process, thereby avoiding the substantial energy consumption required for the regeneration of CO2 capture materials and reducing the cost of the CCUS capture process. The experiment utilized non-precious metals based on Fe and Co as catalytic components and Ca as the adsorption component. A series of Fe x Co y Ca3Al dual-functional materials were prepared using a co-current co-precipitation method for application in the ICCC process for syngas production. The influence of the Fe/Co ratio on the performance of the dual-functional materials was investigated. The dual-functional materials were characterized using techniques such as TEM, XPS, H2-TPR and CO2-TPD. The relevant results indicated that the elements Fe, Co, Ca and Al in the dual-functional materials were uniformly distributed without aggregation. There was an interaction between Fe and Co elements, enhancing the integrated performance of the dual-functional materials. Under optimized conditions, the Fe0.5Co0.5Ca3Al material exhibited a CO2 capture capacity of 11.05mmol/g and a CO yield of 11.94mmol/(g∙h).

Key words: integrated carbon capture and conversion, reverse water gas shift reaction, synthesis gas, dual-function materials, greenhouse gas, catalyst

摘要:

二氧化碳(CO2)的大量排放是导致全球变暖的主要原因之一,其中CO2捕集、利用与封存(CO2 capture, utilization and storage,CCUS)技术是减少碳排放的关键手段,然而传统CCUS技术中捕集成本较高,限制了CCUS技术的推广应用。本文采用CO2捕集-转化一体化(integrated carbon capture and conversion,ICCC)技术方案,通过将碳捕集过程与碳转化过程相耦合,避免CO2捕集材料再生所需的大量能耗,从而降低CCUS捕集过程成本。实验以Fe、Co基非贵金属作为催化组分,Ca为吸附组分,采用并流共沉淀的方法制备了Fe x Co y Ca3Al系列双功能材料,应用于ICCC制备合成气过程,探究了Fe/Co对双功能材料性能的影响,通过透射电子显微镜、X射线光电子能谱、H2-程序升温还原、CO2-程序升温脱附等对双功能材料进行表征,相关结果表明双功能材料Fe、Co、Ca、Al等元素分布均匀,未出现团聚现象,Fe-Co元素之间存在相互作用,提升了双功能材料的一体化性能。在优化条件下,Fe0.5Co0.5Ca3Al材料CO2捕集容量为11.05mmol/g,CO产率达到11.94mmol/(g∙h)。

关键词: CO2捕集-转化一体化, 逆水煤气变换, 合成气, 双功能材料, 温室气体, 催化剂

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd