Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2777-2787.DOI: 10.16085/j.issn.1000-6613.2024-2055
• Synthetic material utilization • Previous Articles
DU Xinyue(
), CHEN Shengchun, QIAN Junfeng, HE Mingyang, CHEN Qun(
)
Received:2024-12-17
Revised:2025-01-14
Online:2025-05-20
Published:2025-05-25
Contact:
CHEN Qun
通讯作者:
陈群
作者简介:杜心悦(1998—),女,硕士研究生,研究方向为聚合物材料阻燃改性。E-mail:1018536671@qq.com。
基金资助:CLC Number:
DU Xinyue, CHEN Shengchun, QIAN Junfeng, HE Mingyang, CHEN Qun. Upgrading waste terephthalic acid into MOF materials for flame retardant application[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2777-2787.
杜心悦, 陈圣春, 钱俊峰, 何明阳, 陈群. 废弃对苯二甲酸升级再造MOF材料及其阻燃应用[J]. 化工进展, 2025, 44(5): 2777-2787.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-2055
| 样品 | PLA/g | APP/g | Li-MOF/g |
|---|---|---|---|
| PLA① | 70 | 0 | 0 |
| PLA/15APP① | 59.5 | 10.5 | 0 |
| PLA/14.5APP/0.5Li-MOF① | 59.5 | 10.15 | 0.35 |
| PLA/14APP/1Li-MOF① | 59.5 | 9.8 | 0.7 |
| PLA/13.5APP/1.5Li-MOF① | 59.5 | 9.45 | 1.05 |
| PLA/13APP/2Li-MOF① | 59.5 | 9.1 | 1.4 |
| PLA/12.5APP/2.5Li-MOF① | 59.5 | 8.75 | 1.75 |
| 样品 | PLA/g | APP/g | Li-MOF/g |
|---|---|---|---|
| PLA① | 70 | 0 | 0 |
| PLA/15APP① | 59.5 | 10.5 | 0 |
| PLA/14.5APP/0.5Li-MOF① | 59.5 | 10.15 | 0.35 |
| PLA/14APP/1Li-MOF① | 59.5 | 9.8 | 0.7 |
| PLA/13.5APP/1.5Li-MOF① | 59.5 | 9.45 | 1.05 |
| PLA/13APP/2Li-MOF① | 59.5 | 9.1 | 1.4 |
| PLA/12.5APP/2.5Li-MOF① | 59.5 | 8.75 | 1.75 |
| 样品 | PVC/g | Ba-Zn热稳定剂/g | DINP/g | Sb2O3/g | Al-MOF/g |
|---|---|---|---|---|---|
| PVC/15Sb2O3① | 40 | 1 | 20 | 10.8 | 0 |
| PVC/13Sb2O3/2Al-MOF① | 40 | 1 | 20 | 9.36 | 1.44 |
| PVC/11.5Sb2O3/3.5Al-MOF① | 40 | 1 | 20 | 8.28 | 2.52 |
| PVC/10Sb2O3/5Al-MOF① | 40 | 1 | 20 | 7.2 | 3.6 |
| PVC/7.5Sb2O3/7.5Al-MOF① | 40 | 1 | 20 | 5.4 | 5.4 |
| PVC/5Sb2O3/10Al-MOF① | 40 | 1 | 20 | 3.6 | 7.2 |
| 样品 | PVC/g | Ba-Zn热稳定剂/g | DINP/g | Sb2O3/g | Al-MOF/g |
|---|---|---|---|---|---|
| PVC/15Sb2O3① | 40 | 1 | 20 | 10.8 | 0 |
| PVC/13Sb2O3/2Al-MOF① | 40 | 1 | 20 | 9.36 | 1.44 |
| PVC/11.5Sb2O3/3.5Al-MOF① | 40 | 1 | 20 | 8.28 | 2.52 |
| PVC/10Sb2O3/5Al-MOF① | 40 | 1 | 20 | 7.2 | 3.6 |
| PVC/7.5Sb2O3/7.5Al-MOF① | 40 | 1 | 20 | 5.4 | 5.4 |
| PVC/5Sb2O3/10Al-MOF① | 40 | 1 | 20 | 3.6 | 7.2 |
| 样品 | SBET/m2·g-1 | VP/cm3·g-1 | rH/nm |
|---|---|---|---|
| Li-MOF | 12.29 | 0.07 | 21.42 |
| Al-MOF | 1131.32 | 0.60 | 2.12 |
| 样品 | SBET/m2·g-1 | VP/cm3·g-1 | rH/nm |
|---|---|---|---|
| Li-MOF | 12.29 | 0.07 | 21.42 |
| Al-MOF | 1131.32 | 0.60 | 2.12 |
| 样品 | T5%/℃ | Tmax/℃ | W800/% |
|---|---|---|---|
| PLA | 340.0 | 366.7 | 1.09 |
| PLA/APP | 328.4 | 363.2 | 7.50 |
| PLA/APP/Li-MOF | 309.2 | 364.4 | 8.65 |
| 样品 | T5%/℃ | Tmax/℃ | W800/% |
|---|---|---|---|
| PLA | 340.0 | 366.7 | 1.09 |
| PLA/APP | 328.4 | 363.2 | 7.50 |
| PLA/APP/Li-MOF | 309.2 | 364.4 | 8.65 |
| 样品 | LOI/% | UL-94 | |
|---|---|---|---|
| 等级 | 熔滴 | ||
| PLA | 20.3 | NR | 是 |
| PLA/15APP | 30.8 | V-2 | 是 |
| PLA/14.5APP/0.5Li-MOF | 31.5 | V-1 | 是 |
| PLA/14APP/1Li-MOF | 32.5 | V-1 | 是 |
| PLA/13.5APP/1.5Li-MOF | 34.2 | V-0 | 否 |
| PLA/13APP/2Li-MOF | 35.5 | V-0 | 否 |
| PLA/12.5APP/2.5Li-MOF | 38.2 | V-0 | 否 |
| 样品 | LOI/% | UL-94 | |
|---|---|---|---|
| 等级 | 熔滴 | ||
| PLA | 20.3 | NR | 是 |
| PLA/15APP | 30.8 | V-2 | 是 |
| PLA/14.5APP/0.5Li-MOF | 31.5 | V-1 | 是 |
| PLA/14APP/1Li-MOF | 32.5 | V-1 | 是 |
| PLA/13.5APP/1.5Li-MOF | 34.2 | V-0 | 否 |
| PLA/13APP/2Li-MOF | 35.5 | V-0 | 否 |
| PLA/12.5APP/2.5Li-MOF | 38.2 | V-0 | 否 |
| 样品 | TTI/s | THR/MJ·m-2 | PHRR/kW·m-2 |
|---|---|---|---|
| PLA | 71 | 61.2 | 358.2 |
| PLA/APP | 59 | 42.0 | 266.0 |
| PLA/APP/Li-MOF | 61 | 48.7 | 313.3 |
| 样品 | TTI/s | THR/MJ·m-2 | PHRR/kW·m-2 |
|---|---|---|---|
| PLA | 71 | 61.2 | 358.2 |
| PLA/APP | 59 | 42.0 | 266.0 |
| PLA/APP/Li-MOF | 61 | 48.7 | 313.3 |
| 样品 | 拉伸强度 /MPa | 弹性模量 /MPa | 断裂伸长率/% |
|---|---|---|---|
| PLA | 41.33±2.16 | 421.87±12.65 | 8.38±1.23 |
| PLA/15APP | 36.03±2.86 | 360.43±13.77 | 11.04±1.82 |
| PLA/14.5APP/0.5Li-MOF | 35.05±2.03 | 235.72±30.39 | 10.48±1.30 |
| PLA/14APP/1Li-MOF | 24.78±1.15 | 219.37±25.61 | 8.56±1.39 |
| PLA/13.5APP/1.5Li-MOF | 14.01±1.69 | 327.17±11.74 | 5.07±0.88 |
| PLA/13APP/2Li-MOF | 11.04±1.37 | 276.27±23.87 | 4.66±0.74 |
| PLA/12.5APP/2.5Li-MOF | 9.41±2.28 | 262.49±26.65 | 3.25±0.78 |
| 样品 | 拉伸强度 /MPa | 弹性模量 /MPa | 断裂伸长率/% |
|---|---|---|---|
| PLA | 41.33±2.16 | 421.87±12.65 | 8.38±1.23 |
| PLA/15APP | 36.03±2.86 | 360.43±13.77 | 11.04±1.82 |
| PLA/14.5APP/0.5Li-MOF | 35.05±2.03 | 235.72±30.39 | 10.48±1.30 |
| PLA/14APP/1Li-MOF | 24.78±1.15 | 219.37±25.61 | 8.56±1.39 |
| PLA/13.5APP/1.5Li-MOF | 14.01±1.69 | 327.17±11.74 | 5.07±0.88 |
| PLA/13APP/2Li-MOF | 11.04±1.37 | 276.27±23.87 | 4.66±0.74 |
| PLA/12.5APP/2.5Li-MOF | 9.41±2.28 | 262.49±26.65 | 3.25±0.78 |
| 样品 | LOI/% | UL-94 | |
|---|---|---|---|
| 等级 | 熔滴 | ||
| PVC/15Sb2O3 | 28.5 | V-0 | 否 |
| PVC/13Sb2O3/2Al-MOF | 30.5 | V-0 | 否 |
| PVC/11.5Sb2O3/3.5Al-MOF | 29.5 | V-0 | 否 |
| PVC/10Sb2O3/5Al-MOF | 32.5 | V-0 | 否 |
| PVC/7.5Sb2O3/7.5Al-MOF | 32.2 | V-0 | 否 |
| PVC/5Sb2O3/10Al-MOF | 31.8 | V-0 | 否 |
| 样品 | LOI/% | UL-94 | |
|---|---|---|---|
| 等级 | 熔滴 | ||
| PVC/15Sb2O3 | 28.5 | V-0 | 否 |
| PVC/13Sb2O3/2Al-MOF | 30.5 | V-0 | 否 |
| PVC/11.5Sb2O3/3.5Al-MOF | 29.5 | V-0 | 否 |
| PVC/10Sb2O3/5Al-MOF | 32.5 | V-0 | 否 |
| PVC/7.5Sb2O3/7.5Al-MOF | 32.2 | V-0 | 否 |
| PVC/5Sb2O3/10Al-MOF | 31.8 | V-0 | 否 |
| 样品 | 拉伸强度 /MPa | 弹性模量 /MPa | 断裂伸长率 /% |
|---|---|---|---|
| PVC/15Sb2O3 | 10.34±0.69 | 3.52±0.17 | 288.01±28.26 |
| PVC/13Sb2O3/2Al-MOF | 12.05±0.57 | 7.38±1.62 | 232.47±33.21 |
| PVC/11.5Sb2O3/3.5Al-MOF | 11.48±1.45 | 7.35±1.83 | 266.53±38.86 |
| PVC/10Sb2O3/5Al-MOF | 12.42±0.61 | 9.38±0.11 | 215.84±34.38 |
| PVC/7.5Sb2O3/7.5Al-MOF | 11.34±0.55 | 7.47±1.72 | 134.92±16.03 |
| PVC/5Sb2O3/10Al-MOF | 12.05±0.42 | 10.69±0.87 | 131.18±21.65 |
| 样品 | 拉伸强度 /MPa | 弹性模量 /MPa | 断裂伸长率 /% |
|---|---|---|---|
| PVC/15Sb2O3 | 10.34±0.69 | 3.52±0.17 | 288.01±28.26 |
| PVC/13Sb2O3/2Al-MOF | 12.05±0.57 | 7.38±1.62 | 232.47±33.21 |
| PVC/11.5Sb2O3/3.5Al-MOF | 11.48±1.45 | 7.35±1.83 | 266.53±38.86 |
| PVC/10Sb2O3/5Al-MOF | 12.42±0.61 | 9.38±0.11 | 215.84±34.38 |
| PVC/7.5Sb2O3/7.5Al-MOF | 11.34±0.55 | 7.47±1.72 | 134.92±16.03 |
| PVC/5Sb2O3/10Al-MOF | 12.05±0.42 | 10.69±0.87 | 131.18±21.65 |
| 1 | DE VOS Lobke, VAN DE VOORDE Babs, VAN DAELE Lenny, et al. Poly(alkylene terephthalate)s: From current developments in synthetic strategies towards applications[J]. European Polymer Journal, 2021, 161: 110840. |
| 2 | MUDONDO Joyce, LEE Hoe-Suk, JEONG Yunhee, et al. Recent advances in the chemobiological upcycling of polyethylene terephthalate (PET) into value-added chemicals[J]. Journal of Microbiology and Biotechnology, 2023, 33(1): 1-14. |
| 3 | EL-SAYED El-Sayed M, YUAN Daqiang. Waste to MOFs: Sustainable linker, metal, and solvent sources for value-added MOF synthesis and applications[J]. Green Chemistry, 2020, 22(13): 4082-4104. |
| 4 | 李志斌, 唐辉, 罗大伟, 等. 废弃PET化学回收及制备不饱和聚酯树脂的研究进展[J]. 化工进展, 2022, 41(6): 3279-3292. |
| LI Zhibin, TANG Hui, LUO Dawei, et al. Progress in chemical recycling of waste PET and preparation of unsaturated polyester resins[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3279-3292. | |
| 5 | MA Dou, HUANG Xin, ZHANG Yu, et al. Metal-organic frameworks: Synthetic methods for industrial production[J]. Nano Research, 2023, 16(5): 7906-7925. |
| 6 | CUI Wengang, ZHANG Guoying, HU Tongliang, et al. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4 [J]. Coordination Chemistry Reviews, 2019, 387: 79-120. |
| 7 | YANG Qihao, XU Qiang, JIANG Hailong. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15): 4774-4808. |
| 8 | SILVA Patrícia, VILELA Sérgio M F, TOMÉ João P C, et al. Multifunctional metal-organic frameworks: From academia to industrial applications[J]. Chemical Society Reviews, 2015, 44(19): 6774-6803. |
| 9 | LI Ting, MA Shuai, YANG Hu, et al. Preparation of carbonized MOF/MgCl2 hybrid products as dye adsorbent and supercapacitor: Morphology evolution and Mg salt effect[J]. Industrial & Engineering Chemistry Research, 2019, 58(4): 1601-1612. |
| 10 | DELEU Willem P R, STASSEN Ivo, JONCKHEERE Dries, et al. Waste PET (bottles) as a resource or substrate for MOF synthesis[J]. Journal of Materials Chemistry A, 2016, 4(24): 9519-9525. |
| 11 | Sheng-Han LO, SENTHIL RAJA Duraisamy, CHEN Chia-Wei, et al. Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr)[J]. Dalton Transactions, 2016, 45(23): 9565-9573. |
| 12 | WARIBAM Preeti, RAJEENDRE KATUGAMPALAGE Thilina, OPAPRAKASIT Pakorn, et al. Upcycling plastic waste: Rapid aqueous depolymerization of PET and simultaneous growth of highly defective UiO-66 metal-organic framework with enhanced CO2 capture via one-pot synthesis[J]. Chemical Engineering Journal, 2023, 473: 145349. |
| 13 | ZHOU Lin, WANG Sujing, CHEN Yunlin, et al. Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source[J]. Microporous and Mesoporous Materials, 2019, 290: 109674. |
| 14 | JUNG Kyung-Won, KIM Jun-Ho, CHOI Jae-Woo. Synthesis of magnetic porous carbon composite derived from metal-organic framework using recovered terephthalic acid from polyethylene terephthalate (PET) waste bottles as organic ligand and its potential as adsorbent for antibiotic tetracycline hydrochloride[J]. Composites B: Engineering, 2020, 187: 107867. |
| 15 | SONG Kainan, QIU Xiaoqing, HAN Bin, et al. Efficient upcycling electroplating sludge and waste PET into Ni-MOF nanocrystals for the effective photoreduction of CO2 [J]. Environmental Science: Nano, 2021, 8(2): 390-398. |
| 16 | DOAN Van Dat, Thi Long DO, Thi Mong Thu HO, et al. Utilization of waste plastic pet bottles to prepare copper-1,4-benzenedicarboxylate metal-organic framework for methylene blue removal[J]. Separation Science and Technology, 2020, 55(3): 444-455. |
| 17 | ZHANG Feng, CHEN Shuyi, NIE Shengqiang, et al. Waste PET as a reactant for lanthanide MOF synthesis and application in sensing of picric acid[J]. Polymers, 2019, 11(12): 2015. |
| 18 | GHOSH Arnab, Gopal DAS. Facile synthesis of Sn(Ⅱ)-MOF using waste PET bottles as an organic precursor and its derivative SnO2 NPs: Role of surface charge reversal in adsorption of toxic ions[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105288. |
| 19 | MA Shicong, HOU Yanbei, XIAO Yuling, et al. Metal-organic framework@polyaniline nanoarchitecture for improved fire safety and mechanical performance of epoxy resin[J]. Materials Chemistry and Physics, 2020, 247: 122875. |
| 20 | ZHAN Yuanyuan, SHANG Sheng, YUAN Bihe, et al. Carbonization mechanism of polypropylene catalyzed by Co compounds combined with phosphorus-doped graphene to improve its fire safety performance[J]. Materials Today Communications, 2021, 26: 101792. |
| 21 | HOU Yanbei, HU Weizhao, GUI Zhou, et al. Preparation of metal–organic frameworks and their application as flame retardants for polystyrene[J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 2036-2045. |
| 22 | Ting SAI, RAN Shiya, GUO Zhenghong, et al. A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate[J]. Composites Part B: Engineering, 2019, 176: 107198. |
| 23 | JIANG Hongrui, ZHAO Shiqiang, MA Xiaoli, et al. A fast π-π stacking self-assembly of cobalt terephthalate dihydrate and the twelve-electron lithiation-delithiation of anhydrous cobalt terephthalate[J]. Journal of Power Sources, 2019, 426: 23-32. |
| 24 | PANDA Debashis, PATRA Soumyadip, AWASTHI Mahendra Kumar, et al. Lab cooked MOF for CO2 capture: A sustainable solution to waste management[J]. Journal of Chemical Education, 2020, 97(4): 1101-1108. |
| 25 | AHADI Niusha, ASKARI Sima, FOULADITAJAR Amir, et al. Facile synthesis of hierarchically structured MIL-53(Al) with superior properties using an environmentally-friendly ultrasonic method for separating lead ions from aqueous solutions[J]. Scientific Reports, 2022, 12(1): 2649. |
| 26 | MOLINARO Stefano, CRUZ ROMERO Malco, BOARO Marta, et al. Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films[J]. Journal of Food Engineering, 2013, 117(1): 113-123. |
| 27 | XIAO Lin, Yiyong MAI, HE Feng, et al. Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose[J]. Journal of Materials Chemistry, 2012, 22(31): 15732-15739. |
| 28 | YU Jinhong, HUANG Xingyi, WU Chao, et al. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties[J]. Polymer, 2012, 53(2): 471-480. |
| 29 | CHU Tao, LU Yixia, HOU Boyou, et al. The application of ammonium polyphosphate in unsaturated polyester resins: A mini review[J]. Polymer Degradation and Stability, 2024, 225: 110796. |
| 30 | SONG Kunpeng, ZHANG Henglai, PAN Yetang, et al. Metal-organic framework-derived bird’s nest-like capsules for phosphorous small molecules towards flame retardant polyurea composites[J]. Journal of Colloid and Interface Science, 2023, 643: 489-501. |
| 31 | XU Jianzhong, ZHANG Chunyan, QU Hongqiang, et al. Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly(vinyl chloride)[J]. Journal of Applied Polymer Science, 2005, 98(3): 1469-1475. |
| [1] | SHAN Xueying, LI Lingyu, ZHANG Meng, ZHANG Jiafu, LI Jinchun. Preparation and properties of flame retardant epoxy resin/low molecular weight polyphenylene ether materials [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1533-1541. |
| [2] | ZHANG Xinyu, TAO Mengying, YU Xiaoting, ZHAO Zhongxing, ZHAO Zhenxia. Laccase immobilized on mesoporous metal-organic framework and its performance of reactive brilliant blue KN-R degradation [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1758-1767. |
| [3] | ZHANG Aijing, WANG Zhenyu, XIAO Ningning, SONG Yanna, LI Jun, FENG Jiangtao, YAN Wei. Research progress on novel adsorption materials for mercury ion [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 899-913. |
| [4] | GENG Qianhao, XU Xiaoyun, LI bingjing. Research progress in control technology for reaction heat of polyurethane grouting materials in mines [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 319-328. |
| [5] | SHEN Chunyu, LI Cuili, TANG Jianwei, LIU Yong, LIU Pengfei, DING Junxiang, SHEN Bo, WANG Baoming. Progress in preparation and flame retardant application of nano magnesium hydroxide [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4980-4995. |
| [6] | ZHANG Yufeng, PANG Yuqian, PEI Haonan, FAN Xiaoqing. Three-way rod metal-organic frameworks for purifying of C2—C3 from natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5185-5192. |
| [7] | LOU Gaobo, YAO Xiaoling, NI Jingwen, FU Shenyuan, LIU Lina. Preparation and properties of two-dimensional mica epoxy resin composite modified by ion complex [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5142-5156. |
| [8] | HUANG Hong, OUYANG Haomin, YANG Yijing, LI Changlin, CHEN Shuona. Adsorption-degradation mechanism of tris(2-chloroethyl)phosphate by a composite adsorbent of zero-valent iron sulfide and microorganism [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4704-4713. |
| [9] | WANG Tao, GAO Xiang, GAO Jifeng, DENG Haiquan, YU Xianyong, ZHOU Zhenhua, TANG Ling, LYU Hang. Application of modified Cu-BTC-based mixed matrix membrane in CO2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3240-3246. |
| [10] | LI Siwen, LEI Min, LIU Yushuang, DONG Zhaoqi, XUE Lili, ZHAO Jianshe. Research progress of ionic liquid-based heteropolyacids in fuel oxidation desulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3322-3335. |
| [11] | YANG Dongxiao, XIONG Qizhao, WANG Yi, CHEN Yang, LI Libo, LI Jinping. Progress in the preparation of hierarchically porous MOF and applications in adsorption and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1882-1896. |
| [12] | JIN Binhao, ZHU Xiaoqian, KE Tian, ZHANG Zhiguo, BAO Zongbi, REN Qilong, SU Baogen, YANG Qiwei. Advances in adsorbents for aromatics/cycloalkanes separation [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1863-1881. |
| [13] | XUE Lili, WU Jiaqi, LI Zhuangzhuang, LI Siwen, WANG Wei, ZHAO Jianshe. Research progress in the synthesis and molding of MOFs confined POM [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6968-6982. |
| [14] | XIAO Pianpian, ZHUO Chaoyue, ZHONG Jinrong, ZHANG Yuefei. Recent advances on modification of metal-organic frameworks for CO2 capture [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6944-6956. |
| [15] | SU Shikun, LIU Tang, JIN Ye, ZHENG Jinyu. Advances of adsorption materials for hydrogen purification [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5612-5632. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |