Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2767-2776.DOI: 10.16085/j.issn.1000-6613.2024-1842

• Synthetic material utilization • Previous Articles    

Machine learning methods for sustainable alternatives and transition of energy materials

WANG Xiaonan1(), FU Siwei1(), LIU Kuan1, LIN Congsheng1, LIN Xiaofeng2   

  1. 1.Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
    2.School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
  • Received:2024-11-11 Revised:2025-01-16 Online:2025-05-20 Published:2025-05-25
  • Contact: WANG Xiaonan

能源材料替代与转型中的机器学习方法

王笑楠1(), 傅思维1(), 刘宽1, 林琮盛1, 林晓风2   

  1. 1.清华大学化学工程系,北京 100084
    2.清华大学航天航空学院,北京 100084
  • 通讯作者: 王笑楠
  • 作者简介:王笑楠(1990—),女,长聘副教授,博士生导师,研究方向为低碳智慧能源化工。E-mail:wangxiaonan@tsinghua.edu.cn
    傅思维(2004—),男,本科生,研究方向为人工智能与化学化工。E-mail:fsw22@mails.tsinghua.edu.cn
  • 基金资助:
    新一代人工智能国家科技重大专项(2022ZD0117501);清华大学自主科研计划(20247020006)

Abstract:

The substitution and transition of energy materials are important ways to achieve carbon peaking and carbon neutrality. The traditional, experiment-based energy materials development process has the advantages of high reliability and intuitive evaluation. However, there exist problems such as high time and resource costs, limited exploration scope, and dependence on knowledge and experience. This paper introduced machine learning methods in energy materials substitution and transition, reviewed the existing applications of machine learning technology in energy materials development and machine learning algorithms available in energy materials development, and analyzed the principles, applications, advantages and challenges of machine learning methods in low-carbon energy materials development and substitution. Based on the systematic review and analysis of the advantages and limitations of machine learning methods in the application of energy materials substitution and transition, this paper put forward the thoughts and prospects on the construction of high-quality datasets, the development of highly adaptive machine learning algorithms and the expansion of efficient energy technologies and systems from the aspects of data, models and applications. The analysis showed that the machine learning method had a very broad room for improvement in the degree of model adaptation and wide application, and the application of machine learning method in the field of energy material substitution and transition had obvious value and bright prospects.

Key words: computational chemistry, renewable energy, AI algorithm, energy material, machine learning

摘要:

能源材料低碳替代与绿色转型是实现碳达峰、碳中和的重要途径。传统基于实验的能源材料开发流程具有高可靠性和可直观评估等优点,但存在时间和资源成本高、探索范围有限、依赖知识和经验等问题。本文介绍了能源材料替代与转型中的机器学习方法,回顾了机器学习技术在能源材料研发中的已有应用和可用在能源材料开发中的机器学习算法,分析了机器学习方法在能源材料开发和替代方面的原理、应用、优势与挑战。根据对机器学习方法在能源材料替代与转型中的应用优势和局限性进行系统综述和分析,从数据、模型及应用等方面提出了构建高质量数据集、开发高适配性机器学习算法及拓展高效能源技术和系统的思考与展望。分析表明,机器学习方法在模型适配程度、应用广泛程度等方面都有十分广阔的提升空间,在能源材料替代与转型领域应用机器学习方法具有显著价值和广阔前景。

关键词: 计算化学, 可再生能源, 人工智能, 能源材料, 机器学习

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd