Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2733-2745.DOI: 10.16085/j.issn.1000-6613.2024-1942
• Synthetic material utilization • Previous Articles
LIU Qiyu1,3(
), LIU Weifeng2, QIU Xueqing1,3(
)
Received:2024-11-26
Revised:2025-01-25
Online:2025-05-20
Published:2025-05-25
Contact:
QIU Xueqing
通讯作者:
邱学青
作者简介:刘启予(1993—),男,副教授,硕士生导师,研究方向为木质素分子间作用力解析及微结构调控。E-mail:liuqiyu@gdut.edu.cn。
基金资助:CLC Number:
LIU Qiyu, LIU Weifeng, QIU Xueqing. Construction strategies of lignin/polymer composite based on interface compatibility strengthening[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2733-2745.
刘启予, 刘伟峰, 邱学青. 基于界面相容性强化的木质素/高分子复合材料构筑策略[J]. 化工进展, 2025, 44(5): 2733-2745.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1942
| 1 | Monika ÖSTERBERG, Alexander HENN K, FAROOQ Muhammad, et al. Biobased Nanomaterials─The role of interfacial interactions for advanced materials[J]. Chemical Reviews, 2023, 123(5): 2200-2241. |
| 2 | CHEN Jing, FAN Xiaolin, ZHANG Lidan, et al. Research progress in lignin-based slow/controlled release fertilizer[J]. ChemSusChem, 2020, 13(17): 4356-4366. |
| 3 | 蒋挺大. 木质素[M]. 2版. 北京: 化学工业出版社, 2009. |
| JIANG Tingda. Lignin[M]. 2nd ed. Beijing: Chemical Industry Press, 2009. | |
| 4 | 王欢, 杨东杰, 钱勇, 等. 木质素基功能材料的制备与应用研究进展[J]. 化工进展, 2019, 38(1): 434-448. |
| WANG Huan, YANG Dongjie, QIAN Yong, et al. Recent progress in the preparation and application of lignin-based functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 434-448. | |
| 5 | ZHANG Wenli, QIU Xueqing, WANG Caiwei, et al. Lignin derived carbon materials: Current status and future trends[J]. Carbon Research, 2022, 1(1): 14. |
| 6 | Charlotte K, Marc A. Polymers from renewable resources: A perspective for a special issue of polymer reviews[J]. Polymer Reviews, 2008, 48(1): 1-10. |
| 7 | ZHU Yunqing, ROMAIN Charles, WILLIAMS Charlotte K. Sustainable polymers from renewable resources[J]. Nature, 2016, 540(7633): 354-362. |
| 8 | MO Jianbin, WANG Haixu, YAN Mengzhen, et al. Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites[J]. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1372-1388. |
| 9 | BASS Garrett F, EPPS Thomas H. Recent developments towards performance-enhancing lignin-based polymers[J]. Polymer Chemistry, 2021, 12(29): 4130-4158. |
| 10 | AGUSTIANY Erika Ayu, RIDHO Muhammad Rasyidur, Muslimatul Rahmi D N, et al. Recent developments in lignin modification and its application in lignin-based green composites: A review[J]. Polymer Composites, 2022, 43(8): 4848-4865. |
| 11 | SPIRIDON Iuliana, LELUK Karol, RESMERITA Ana Maria, et al. Evaluation of PLA-lignin bioplastics properties before and after accelerated weathering[J]. Composites B: Engineering, 2015, 69: 342-349. |
| 12 | COLLINS Maurice N, Mărioara NECHIFOR, Fulga TANASĂ, et al. Valorization of lignin in polymer and composite systems for advanced engineering applications—A review[J]. International Journal of Biological Macromolecules, 2019, 131: 828-849. |
| 13 | LIU Hai, GUAN Yanhua, YAN Li, et al. The development of lignin towards a natural and sustainable platform for optical materials[J]. Green Chemistry, 2024, 26, 9281-9294. |
| 14 | KADLA John F, KUBO Satoshi. Lignin-based polymer blends: Analysis of intermolecular interactions in lignin-synthetic polymer blends[J]. Composites A: Applied Science and Manufacturing, 2004, 35(3): 395-400. |
| 15 | RIDHO Muhammad Rasyidur, AGUSTIANY Erika Ayu, Muslimatul Rahmi DN, et al. Lignin as green filler in polymer composites: Development methods, characteristics, and potential applications[J]. Advances in Materials Science and Engineering, 2022, 2022(1): 1363481. |
| 16 | MIAO Chuanwei, HAMAD Wadood Y. Controlling lignin particle size for polymer blend applications[J]. Journal of Applied Polymer Science, 2017, 134(14): 44669. doi:10.1002/app.44669 . |
| 17 | IYER Krishnan A, TORKELSON John M. Sustainable green hybrids of polyolefins and lignin yield major improvements in mechanical properties when prepared via solid-state shear pulverization[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(5): 959-968. |
| 18 | ABDELWAHAB Mohamed A, MISRA Manjusri, MOHANTY Amar K. Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and performance[J]. Industrial Crops and Products, 2019, 132: 497-510. |
| 19 | VACHON Jérôme, Derar ASSAD-ALKHATEB, DE ARAUJO HSIA Laura, et al. Effect of compatibilizers on polyethylene-eucalyptus lignin blends[J]. Journal of Applied Polymer Science, 2023, 140(14): e53695. |
| 20 | MONDAL Sanchit, JATRANA Anushree, MAAN Sheetal, et al. Lignin modification and valorization in medicine, cosmetics, environmental remediation and agriculture: A review[J]. Environmental Chemistry Letters, 2023, 21(4): 2171-2197. |
| 21 | JIANG Lu, WANG Chengang, CHEE Peilin, et al. Strategies for lignin depolymerization and reconstruction towards functional polymers[J]. Sustainable Energy & Fuels, 2023, 7(13): 2953-2973. |
| 22 | WANG Xiu, BIAN Huiyang, NI Shuzhen, et al. BNNS/PVA bilayer composite film with multiple-improved properties by the synergistic actions of cellulose nanofibrils and lignin nanoparticles[J]. International Journal of Biological Macromolecules, 2020, 157: 259-266. |
| 23 | YANG Weijun, ZHU Yanlin, HE Yongbin, et al. Preparation of toughened poly(lactic acid)-poly(ε-caprolactone)-lignin nanocomposites with good heat- and UV-resistance[J]. Industrial Crops and Products, 2022, 183: 114965. |
| 24 | FENG Pingxian, LEI Junjie, MEI Jie, et al. Effect of lignin on the structure-property behavior of metal-coordinated and chemically crosslinked ethylene-propylene-diene-monomer composites[J]. International Journal of Biological Macromolecules, 2024, 271: 132766. |
| 25 | SUN Danting, MO Jianbin, LIU Weifeng, et al. Ultra-strong and tough bio-based polyester elastomer with excellent photothermal shape memory effect and degradation performance[J]. Advanced Functional Materials, 2024, 34(39): 2403333. |
| 26 | 亓伟, 王闻, 王琼, 等. 木质纤维素预处理技术及其机理研究进展[J]. 新能源进展, 2013, 1(2): 150-158. |
| QI Wei, WANG Wen, WANG Qiong, et al. Review on the pretreatment method and mechanism of lignocellulose[J]. Advances in New and Renewable Energy, 2013, 1(2): 150-158. | |
| 27 | ZHAO Wenwen, XIAO Lingping, SONG Guoyong, et al. From lignin subunits to aggregates: Insights into lignin solubilization[J]. Green Chemistry, 2017, 19(14): 3272-3281. |
| 28 | WANG Jingyu, QIAN Yong, LI Libo, et al. Atomic force microscopy and molecular dynamics simulations for study of lignin solution self-assembly mechanisms in organic–aqueous solvent mixtures[J]. ChemSusChem, 2020, 13(17): 4420-4427. |
| 29 | WANG Jingyu, QIAN Yong, DENG Yonghong, et al. Probing the interactions between lignin and inorganic oxides using atomic force microscopy[J]. Applied Surface Science, 2016, 390: 617-622. |
| 30 | WANG Jingyu, LI Ying, QIU Xueqing, et al. Dissolution of lignin in green urea aqueous solution[J]. Applied Surface Science, 2017, 425: 736-741. |
| 31 | WANG Jingyu, QIAN Yong, ZHOU Yijie, et al. Atomic force microscopy measurement in the lignosulfonate/inorganic silica system: From dispersion mechanism study to product design[J]. Engineering, 2021, 7(8): 1140-1148. |
| 32 | FU Shaoyun, FENG Xiqiao, LAUKE Bernd, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites[J]. Composites Part B: Engineering, 2008, 39(6): 933-961. |
| 33 | ZHAO Wenwen, SIMMONS Blake, SINGH Seema, et al. From lignin association to nano-/micro-particle preparation: Extracting higher value of lignin[J]. Green Chemistry, 2016, 18(21): 5693-5700. |
| 34 | XU Kaimeng, SHI Zhengjun, Jianhua LYU, et al. Effects of hydrothermal pretreatment on nano-mechanical property of switchgrass cell wall and on energy consumption of isolated lignin-coated cellulose nanofibrils by mechanical grinding[J]. Industrial Crops and Products, 2020, 149: 112317. |
| 35 | YE Haichuan, YOU Tingting, NAWAZ Haq, et al. A comprehensive review on polylactic acid/lignin composites—Structure, synthesis, performance, compatibilization, and applications[J]. International Journal of Biological Macromolecules, 2024, 280: 135886. |
| 36 | LIU Liangxian, CUI Boyu, TAN Lei, et al. Improving the combination of cellulose and lignin using xylan as a compatibilizer[J]. Cellulose, 2021, 28(9): 5335-5349. |
| 37 | ZHOU Xin, HE Taizhi, JIANG Yinkui, et al. A novel network-structured compatibilizer for improving the interfacial behavior of PBS/lignin[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(25): 8592-8602. |
| 38 | YE Haichuan, HE Yuan, LI Haichao, et al. Customized compatibilizer to improve the mechanical properties of polylactic acid/lignin composites via enhanced intermolecular interactions for 3D printing[J]. Industrial Crops and Products, 2023, 205: 117454. |
| 39 | TAHER Muhammad ABU, WANG Xiaolin, FARIDUL HASAN K M, et al. Lignin modification for enhanced performance of polymer composites[J]. ACS Applied Bio Materials, 2023, 6(12): 5169-5192. |
| 40 | CHAI Lanfang, DU Boyu, YAN Shasha, et al. Preparation of activated lignin with high hydroxyl content using lewis acid as demethylation reagent[J]. International Journal of Biological Macromolecules, 2022, 222: 2571-2580. |
| 41 | XIAO Liangfeng, LIU Weifeng, HUANG Jinhao, et al. Study on the antioxidant activity of lignin and its application performance in SBS elastomer[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 790-797. |
| 42 | MO Jianbin, LEI Junjie, WANG Haixu, et al. Melt-processable polyvinyl alcohol/lignin composites with improved strength via synergistic plasticization of lignin[J]. International Journal of Biological Macromolecules, 2024, 267: 131726. |
| 43 | DEHNE Laura, VILA Carlos, SAAKE Bodo, et al. Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends[J]. Journal of Applied Polymer Science, 2017, 134(11): 44582. doi:10.1002/app.44582 . |
| 44 | Ji Won HEO, XIA Qian, KIM Min Soo, et al. Tunable hydrophobicity and biodegradability of acetylated lignin/polyester fibrous mat for water/oil separation[J]. Journal of Wood Chemistry and Technology, 2024, 44(4): 253-265. |
| 45 | LIU Hailing, CHUNG Hoyong. Lignin-based polymers via graft copolymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(21): 3515-3528. |
| 46 | KIM Sundol, CHUNG Hoyong. Biodegradable polymers: From synthesis methods to applications of lignin-graft-polyester[J]. Green Chemistry, 2024, 26(21): 10774-10803. |
| 47 | TANG Qianqian, QIAN Yong, YANG Dongjie, et al. Lignin-based nanoparticles: A review on their preparations and applications[J]. Polymers, 2020, 12(11): 2471. |
| 48 | ZHANG Zhao, TERRASSON Vincent, Erwann GUÉNIN. Lignin nanoparticles and their nanocomposites[J]. Nanomaterials, 2021, 11(5): 1336. |
| 49 | XIANG Ting, CHEN Liheng, QIU Xueqing, et al. Strengthening the π-conjugation of lignin by constructing its ordered supramolecular structure[J]. Chemical Engineering Journal, 2024, 497: 154356. |
| 50 | WANG Jingyu, CHEN Wenhao, YANG Dongjie, et al. Photonic lignin with tunable and stimuli-responsive structural color[J]. ACS Nano, 2022, 16(12): 20705-20713. |
| 51 | WANG Jingyu, CHEN Wenhao, YANG Dongjie, et al. Monodispersed lignin colloidal spheres with tailorable sizes for bio-photonic materials[J]. Small, 2022, 18(19): 2200671. |
| 52 | ZHANG Xiao, LIU Weifeng, YANG Dongjie, et al. Biomimetic supertough and strong biodegradable polymeric materials with improved thermal properties and excellent UV-blocking performance[J]. Advanced Functional Materials, 2019, 29(4): 1806912. |
| 53 | WANG Haixu, YANG Dongjie, XIONG Wenlong, et al. One-pot preparation of hydrophobic lignin/SiO2 nanoparticles and its reinforcing effect on HDPE[J]. International Journal of Biological Macromolecules, 2021, 180: 523-532. |
| 54 | HUANG Jinhao, LIU Weifeng, QIU Xueqing, et al. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites[J]. International Journal of Biological Macromolecules, 2021, 183: 1450-1458. |
| 55 | ZHOU Xinxin, GUO Baochun, ZHANG Liqun, et al. Progress in bio-inspired sacrificial bonds in artificial polymeric materials[J]. Chemical Society Reviews, 2017, 46(20): 6301-6329. |
| 56 | MA Chao, WEI Jie, An Bowen, et al. Scallop-inspired of multi-boned network protein adhesive with excellent bonding strength, mildew resistance and flame retardancy. Industrial Crops and Products, 2024, 222: 120006. |
| 57 | ZHANG Xiao, LIU Weifeng, SUN Danting, et al. Very strong, super-tough, antibacterial, and biodegradable polymeric materials with excellent UV-blocking performance[J]. ChemSusChem, 2020, 13(18): 4974-4984. |
| 58 | ZHANG Xiao, LIU Weifeng, LIU Wenqiang, et al. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties[J]. International Journal of Biological Macromolecules, 2020, 142: 551-558. |
| 59 | DUVAL Antoine, LAWOKO Martin. A review on lignin-based polymeric, micro- and nano-structured materials[J]. Reactive and Functional Polymers, 2014, 85: 78-96. |
| 60 | Ángel SÁNCHEZ-GONZÁLEZ, MARTÍN-MARTÍNEZ Francisco J, DOBADO J A. The role of weak interactions in lignin polymerization[J]. Journal of Molecular Modeling, 2017, 23(3): 80. |
| 61 | Dávid KUN, Béla PUKÁNSZKY. Polymer/lignin blends: Interactions, properties, applications[J]. European Polymer Journal, 2017, 93: 618-641. |
| 62 | LI Wenfeng, HUANG Jinhao, LIU Weifeng, et al. Lignin modified PBAT composites with enhanced strength based on interfacial dynamic bonds[J]. Journal of Applied Polymer Science, 2022, 139(27): e52476. |
| 63 | ZHANG Ganggang, TIAN Chenru, SHI Jinwei, et al. Mechanically robust, self-repairable, shape memory and recyclable ionomeric elastomer composites with renewable lignin via interfacial metal-ligand interactions[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38216-38227. |
| 64 | JIANG Shan, LIU Xiuyu, WANG Zehai, et al. In situ lignin modification enabling enhanced interfibrillar interactions in lignocellulosic nanomaterials toward structural applications[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(20): 7705-7718. |
| 65 | HUANG Zhiyi, WANG Huan, DU Jiahao, et al. High-strength, self-reinforcing and recyclable multifunctional lignin-based polyurethanes based on multi-level dynamic cross-linking[J]. Chemical Engineering Journal, 2023, 473: 145423. |
| 66 | 于清溪. 中国橡胶工业崛起之思考[J]. 现代化工, 2006, 26(6): 1-6. |
| YU Qingxi. Some thoughts about rubber industry already grown up in China[J]. Modern Chemical Industry, 2006, 26(6): 1-6. | |
| 67 | FAN Yiran, FOWLER Geoff D, ZHAO Ming. The past, present and future of carbon black as a rubber reinforcing filler—A review[J]. Journal of Cleaner Production, 2020, 247: 119115. |
| 68 | KARÁSEK L, SUMITA M. Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites[J]. Journal of Materials Science, 1996, 31(2): 281-289. |
| 69 | FU Ye, ZHAO Detao, YAO Pengjun, et al. Highly aging-resistant elastomers doped with antioxidant-loaded clay nanotubes[J]. ACS Applied Materials & Interfaces, 2015, 7(15): 8156-8165. |
| 70 | PRAVEEN S, CHATTOPADHYAY P K, ALBERT P, et al. Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: Development of dual structure[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(3): 309-316. |
| 71 | GOMES Filipa O, ROSÁRIO ROCHA M, ALVES Arminda, et al. A review of potentially harmful chemicals in crumb rubber used in synthetic football pitches[J]. Journal of Hazardous Materials, 2021, 409: 124998. |
| 72 | WANG Haixu, LIU Weifeng, HUANG Jinhao, et al. Bioinspired engineering towards tailoring advanced lignin/rubber elastomers[J]. Polymers, 2018, 10(9): 1033. |
| 73 | WANG Haixu, LIU Weifeng, TU Zhikai, et al. Lignin-reinforced nitrile rubber/poly(vinyl chloride) composites via metal coordination interactions[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23114-23123. |
| 74 | YANG Ling, LUO Wenjie, MUHAMMAD Yassen, et al. Surface modification of bagasse fibers based on polyphenol-induced self-supplied lignin for the creation of composite SBS-modified asphalt[J]. Industrial Crops and Products, 2024, 208, 117835. |
| 75 | HUANG Jinhao, LIU Weifeng, QIU Xueqing. High performance thermoplastic elastomers with biomass lignin as plastic phase[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6550-6560. |
| 76 | TU Zhikai, LIU Weifeng, WANG Jin, et al. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process[J]. Nature Communications, 2021, 12(1): 2916. |
| 77 | TU Zhikai, WANG Jin, LIU Weifeng, et al. A fast-response biomimetic phototropic material built by a coordination-assisted photothermal domino strategy[J]. Materials Horizons, 2022, 9(10): 2613-2625. |
| 78 | LIU Weifeng, FANG Chang, WANG Shengyu, et al. High-performance lignin-containing polyurethane elastomers with dynamic covalent polymer networks[J]. Macromolecules, 2019, 52(17): 6474-6484. |
| 79 | LIU Zheng, LIU Tao, JIANG Huguo, et al. Biomimetic lignin-protein adhesive with dynamic covalent/hydrogen hybrid networks enables high bonding performance and wood-based panel recycling[J]. International Journal of Biological Macromolecules, 2022, 214: 230-240. |
| 80 | SONG Panpan, DU Liuping, PANG Jiuyin, et al. Preparation and properties of lignin-based vitrimer system containing dynamic covalent bonds for reusable and recyclable epoxy asphalt[J]. Industrial Crops and Products, 2023, 197: 116498. |
| 81 | WANG Haixu, HUANG Jianhua, LIU Weifeng, et al. Tough and fast light-controlled healable lignin-containing polyurethane elastomers[J]. Macromolecules, 2022, 55(19): 8629-8641. |
| 82 | WANG Shengyu, LIU Weifeng, YANG Dongjie, et al. Highly resilient lignin-containing polyurethane foam[J]. Industrial & Engineering Chemistry Research, 2019, 58(1): 496-504. |
| [1] | WANG Shuizhong, SONG Guoyong. Selective hydrogenolysis of lignin into functional monophenols and their high-value utilization [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2535-2540. |
| [2] | CHEN Yanjun, DAI Jie, SHAN Junqiang, ZHANG Sixin, JI Lei, ZHU Chenjie, YING Hanjie. Research progress and development trends of cellulosic ethanol in China [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2541-2562. |
| [3] | AI Jiazhen, ZHANG Zhenlei, ZHAN Guoxiong, MA Longwei, SHI Guojing, YIN Haichuan, ZHANG Xiangping. Advances in "lignin-first" reductive catalytic fractionation process and simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2683-2693. |
| [4] | WANG Xinying, LI Aipeng, SU Wenrui, FEI Qiang. Research progress on the artificial regulation of lignin-degrading enzymes [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2694-2704. |
| [5] | DENG Xuefei, LYU Kaihe, LI Jian, SUN Jinsheng, FAN Junhao, LIAO Ting, HUANG Ning. Research status and development trend of polymer fluid loss reducer for ultra-deep drilling fluid [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2119-2132. |
| [6] | HE Jing, ZHENG Na, XU Li, SHEN Sudan, PU Qun, FANG Eryuan, JIE Suyun. Techniques and applications of atomic force microscope infrared spectroscopy and chemical imaging [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2156-2171. |
| [7] | XUE Lixin, DONG Yongping, CHEN Mengyao, GAO Congjie. Synergistic regulation mechanism of sodium dodecyl sulfate (SDS) and strong base (NaOH) on polyamide composite nanofiltration memrbanes [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2225-2237. |
| [8] | WANG Peigan, LI Leli, XIE Songzhuan, SONG Bingbing, KONG Qiaoping, LIU Gaige, MA Weiwei, SHI Xueqing. Phosphate adsorption mechanism of sludge-based FeCa-ALE composite material [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2365-2373. |
| [9] | LIU Junjie, WU Jianmin, SUN Qiwen, WANG Jiancheng, SUN Yan. Research of metallocene catalysts for linear α-olefins polymerization to obtain high molecular weight products [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1309-1322. |
| [10] | SONG Ci, LI Haiyan, ZHANG Shizhen, LIU Hongwei, ZHANG Jianying, QIU Jiahao, CAO Renwei, SUN Kun, QIN Ying, ZHU Mingxu, GAO Mengyan. Types and application status of the self-repairing anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1466-1484. |
| [11] | XUE Bingfeng, ZHANG Ye, ZHANG Shiyuan, FU Peng, CUI Zhe, ZHANG Yuancheng, LI Xin, PANG Xinchang, ZHAO Wei, ZHANG Xiaomeng, LIU Minying. Preparation and characterization of polyamide PA12T by direct solid state polymerization [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1559-1569. |
| [12] | YAN Pengcheng, GAO Zhuofan, ZHOU Zhihui, WU Hongdan, CHEN Xia, ZHOU Xian, FAN Zeyu, DENG Shanshan, LU Qi, XIANG Yuan. Preparation of polyamide/poly ether ether ketone composite membranes and their organic solvents nanofiltration properties [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1147-1156. |
| [13] | ZHANG Aijing, WANG Zhenyu, XIAO Ningning, SONG Yanna, LI Jun, FENG Jiangtao, YAN Wei. Research progress on novel adsorption materials for mercury ion [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 899-913. |
| [14] | LI Jun, ZHANG Yu, WU Xinyu, LIAN Hailan. Research progress on the use of natural compounds in photoinitiating systems [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 941-956. |
| [15] | FANG Biyao, QIU Jianhao, LI Yixin, YAO Jianfeng. Lignocellulose-derived biochar-modified semiconductors and their photocatalytic applications [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 957-970. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |