Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2577-2586.DOI: 10.16085/j.issn.1000-6613.2025-0185

• Renewable energy utilization • Previous Articles    

Advances in key technologies and industrial development of bio-based furandicarboxylic acid

QIAO Kai1(), ZHANG Zhenyu2, MA Huixia1, FU Jie2, ZHOU Feng1   

  1. 1.SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co. , Ltd. , Dalian 116045, Liaoning, China
    2.Institute of Zhejiang University-Quzhou, Quzhou 324000, Zhejiang, China
  • Received:2025-02-10 Revised:2025-03-11 Online:2025-05-20 Published:2025-05-25
  • Contact: QIAO Kai

生物基呋喃二甲酸关键技术路线和产业发展现状

乔凯1(), 张震宇2, 马会霞1, 傅杰2, 周峰1   

  1. 1.中石化(大连)石油化工研究院有限公司,辽宁 大连 116045
    2.浙江大学衢州研究院,浙江 衢州 324000
  • 通讯作者: 乔凯
  • 作者简介:乔凯(1974—),男,教授级高级工程师,研究方向为生物质综合利用。E-mail:qiaokai.fshy@sinopec.com
  • 基金资助:
    中国石化重大科技项目(O23001)

Abstract:

Driven by global carbon neutrality initiatives and the development of circular economy, bio-based materials are gradually emerging as significant alternatives to petroleum-based counterparts. Among these, 2,5-furandicarboxylic acid (FDCA), with its rigid aromatic ring structure and exceptional physicochemical properties, is recognized as the most promising bio-based substitute for terephthalic acid, demonstrating broad application prospects in sustainable polymer materials. This review systematically analyzes mainstream FDCA production processes (including HMF, MMF/RMF, glucaric acid, and furfural/furoic acid routes), compares their economic viability and environmental benefits, and identifies the HMF pathway as the most industrially feasible approach currently available. However, key challenges persist, including poor stability of intermediate HMF, high energy consumption in separation processes, and limitations in catalytic system selectivity. By systematically organizing the technological routes, key steps, and industrialization processes of FDCA production through chemical methods, this study aims to provide theoretical references and technical support for promoting the efficient development and industrial upgrading of the FDCA sector. In the future, by focusing on high-value-added markets, developing novel HMF derivatization processes, advancing integrated chain production, and coordinating policies with industrial chain synergies, there is potential to overcome cost constraints and accelerate the industrialization process of FDCA.

Key words: biomass, 5-hydroxymethylfurfural, furandicarboxylic acid, furan-based new materials, industrialization

摘要:

在全球“碳中和”与循环经济发展的推动下,生物基材料正逐步成为石油基材料的重要替代品。其中,2,5-呋喃二甲酸(FDCA)凭借其刚性芳环结构及优异的物理化学性能,被认为是最具潜力的对苯二甲酸生物基替代品,在可持续高分子材料领域展现出广阔的应用前景。本综述系统分析了FDCA的主流制备技术路线(如HMF、MMF/RMF、葡萄糖二酸、糠醛/糠酸路线),对比了各技术的经济性与环境效益,指出HMF路线是当前走在工业化最前端的技术路径,但仍面临中间体HMF稳定性差、分离能耗高及催化体系选择性受限等关键挑战。通过系统梳理化学法制备FDCA的技术路线、关键环节和产业化进程,旨在为推动FDCA产业的高效发展及产业升级提供理论参考与技术支持。未来通过聚焦高附加值市场、开发HMF衍生化新工艺、推动链式集成生产,并结合政策与产业链协同,有望突破成本制约,加速FDCA产业化进程。

关键词: 生物质, 5-羟甲基糠醛, 呋喃二甲酸, 呋喃类新材料, 产业化

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd