Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2541-2562.DOI: 10.16085/j.issn.1000-6613.2024-1849
• Renewable energy utilization • Previous Articles
CHEN Yanjun(
), DAI Jie, SHAN Junqiang, ZHANG Sixin, JI Lei, ZHU Chenjie(
), YING Hanjie(
)
Received:2024-11-12
Revised:2025-02-10
Online:2025-05-20
Published:2025-05-25
Contact:
ZHU Chenjie, YING Hanjie
陈彦君(
), 戴杰, 单军强, 张思欣, 计磊, 朱晨杰(
), 应汉杰(
)
通讯作者:
朱晨杰,应汉杰
作者简介:陈彦君(1993—),女,博士,研究方向为生物质精炼。E-mail:chenyj@njtech.edu.cn。
基金资助:CLC Number:
CHEN Yanjun, DAI Jie, SHAN Junqiang, ZHANG Sixin, JI Lei, ZHU Chenjie, YING Hanjie. Research progress and development trends of cellulosic ethanol in China[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2541-2562.
陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1849
| 发布时间 | 发文机关 | 政策名称 | 主要内容 |
|---|---|---|---|
| 2001.3 | 国家粮食局会同有关部门 | 《陈化粮处理若干规定》 | 按照国务院有关文件规定执行,目前陈化粮主要集中用于生产酒精、饲料等;如用于其他用途,需报经国务院批准 |
| 2006.12 | 国家发展改革委 | 《国家发展改革委关于加强玉米加工项目建设管理的紧急通知》 | 坚持非粮为主,积极稳妥推动生物燃料乙醇产业发展;立即暂停核准和备案玉米加工项目,并对在建和拟建项目进行全面清理 |
| 2006.12 | 国家发展改革委、财政部 | 《国家发展改革委、财政部关于加强生物燃料乙醇项目建设管理,促进产业健康发展的通知》 | 重点支持以薯类、甜高粱及纤维资源等非粮原料产业发展;努力提高产业经济性和竞争力,促进纤维素乙醇产业化;生物燃料乙醇项目实行核准制 |
| 2007.8 | 国家发展改革委 | 《可再生能源中长期发展规划》 | 不再增加以粮食为原料的燃料乙醇生产能力,合理利用非粮生物质原料生产燃料乙醇;到2020年,生物燃料乙醇年利用量达到1000万吨,生物柴油年利用量达到200万吨,总计年替代约1000万吨成品油 |
| 2008.3 | 国家发展改革委 | 《可再生能源发展“十一五”规划》 | 主要鼓励以甜高粱茎秆、薯类作物等非粮生物质为原料的燃料乙醇生产;重点进行以非粮生物质为原料的燃料乙醇规模化试点项目;到2010年,以非粮生物质为原料的燃料乙醇年生产能力达到200万吨 |
| 2012.8 | 国家能源局 | 《可再生能源发展“十二五”规划》 | 推进以农林剩余物为主要原料的纤维素乙醇和生物质热化学转化制备液体燃料示范工程;到2015年,生物燃料乙醇年利用量350万~400万吨,生物柴油和航空生物燃料年利用量100万吨 |
| 2016.10 | 国家能源局 | 《生物质能发展“十三五”规划》 | 大力发展纤维乙醇,开展先进生物燃料产业示范项目建设;适度发展木薯等非粮燃料乙醇;到2020年,生物液体燃料年利用量达到600万吨以上 |
| 2016.12 | 国家发展改革委 | 《可再生能源发展“十三五”规划》 | 推进生物液体燃料产业化发展,稳步扩大燃料乙醇生产和消费;大力发展纤维乙醇,适度发展木薯、甜高粱等燃料乙醇项目 |
| 2017.9 | 国家发展改革委、国家能源局等十五部门 | 《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》 | 适度发展粮食燃料乙醇,科学合理把握粮食燃料乙醇总量,大力发展纤维素燃料乙醇等先进生物液体燃料;到2025年,力争纤维素乙醇实现规模化生产,形成更加完善的市场化运行机制 |
| 2020.12 | 中华人民共和国国务院新闻办公室 | 《新时代的中国能源发展》 | 建设多元清洁的能源供应体系,坚持不与人争粮、不与粮争地的原则,严格控制燃料乙醇加工产能扩张,推进非粮生物液体燃料技术产业化发展 |
| 2021.4 | 国家能源局 | 《2021年能源工作指导意见》 | 大力发展非化石能源,有序推进生物质能开发利用,加快推进纤维素等非粮生物燃料乙醇产业示范 |
| 2021.10 | 国务院 | 《2030年前碳达峰行动方案》 | 积极扩大电力、氢能、天然气、先进生物液体燃料等新能源、清洁能源在交通运输领域应用,大力推进先进生物液体燃料、可持续航空燃料等替代传统燃油 |
| 2022.2 | 国家发展改革委、国家能源局 | 《关于完善能源绿色低碳转型体制机制和政策措施的意见》 | 建立清洁低碳能源产业链供应链协同创新机制,加快纤维素等非粮生物燃料乙醇、生物航空煤油等先进可再生能源燃料关键技术协同攻关及产业化示范 |
| 2022.2 | 中共中央、国务院 | 《中共中央 国务院关于做好2022年全面推进乡村振兴重点工作的意见》 | 统筹做好重要农产品调控,严格控制以玉米为原料的燃料乙醇加工 |
| 2022.3 | 国家发展改革委、国家能源局 | 《“十四五”现代能源体系规划》 | 加强安全战略技术储备,按照不与粮争地、不与人争粮的原则,提升燃料乙醇综合效益,大力发展纤维素燃料乙醇、生物柴油、生物航空煤油等非粮生物燃料 |
| 2022.5 | 国家发展改革委 | 《“十四五”生物经济发展规划》 | 积极开发生物能源,加快生物天然气、纤维素乙醇、藻类生物燃料等关键技术研发和设备制造;在城乡有机废弃物集中地区开展纤维素乙醇、生物柴油、生物天然气产业示范,打通生物质原料收集、有机肥生产使用等重要环节,提高生物燃料生产规模 |
| 2022.6 | 国家发展改革委、国家能源局等九部门 | 《“十四五”可再生能源发展规划》 | 大力发展非粮生物质液体燃料,积极发展纤维素等非粮燃料乙醇,鼓励开展醇、电、气、肥等多联产示范;持续推进燃料乙醇、生物柴油等清洁液体燃料商业化应用,扩大在重型道路交通、航空和航运中对汽油柴油的规模化替代 |
| 2024.3 | 国家能源局 | 《2024年能源工作指导意见》 | 加快培育能源新业态新模式,稳步推进绿色清洁液体燃料发展,有序推动纤维素等非粮燃料乙醇技术创新和产业化,抓好生物柴油推广应用试点示范 |
| 2024.8 | 国家能源局 | 《关于组织开展绿色液体燃料技术攻关和产业化试点的通知 (征求意见稿)》 | 拟组织开展绿色液体燃料技术攻关和产业化试点,并明确绿色液体燃料是以生物柴油、可持续航煤、生物燃料乙醇、可再生甲醇、可再生氨等为代表的可再生能源 |
| 发布时间 | 发文机关 | 政策名称 | 主要内容 |
|---|---|---|---|
| 2001.3 | 国家粮食局会同有关部门 | 《陈化粮处理若干规定》 | 按照国务院有关文件规定执行,目前陈化粮主要集中用于生产酒精、饲料等;如用于其他用途,需报经国务院批准 |
| 2006.12 | 国家发展改革委 | 《国家发展改革委关于加强玉米加工项目建设管理的紧急通知》 | 坚持非粮为主,积极稳妥推动生物燃料乙醇产业发展;立即暂停核准和备案玉米加工项目,并对在建和拟建项目进行全面清理 |
| 2006.12 | 国家发展改革委、财政部 | 《国家发展改革委、财政部关于加强生物燃料乙醇项目建设管理,促进产业健康发展的通知》 | 重点支持以薯类、甜高粱及纤维资源等非粮原料产业发展;努力提高产业经济性和竞争力,促进纤维素乙醇产业化;生物燃料乙醇项目实行核准制 |
| 2007.8 | 国家发展改革委 | 《可再生能源中长期发展规划》 | 不再增加以粮食为原料的燃料乙醇生产能力,合理利用非粮生物质原料生产燃料乙醇;到2020年,生物燃料乙醇年利用量达到1000万吨,生物柴油年利用量达到200万吨,总计年替代约1000万吨成品油 |
| 2008.3 | 国家发展改革委 | 《可再生能源发展“十一五”规划》 | 主要鼓励以甜高粱茎秆、薯类作物等非粮生物质为原料的燃料乙醇生产;重点进行以非粮生物质为原料的燃料乙醇规模化试点项目;到2010年,以非粮生物质为原料的燃料乙醇年生产能力达到200万吨 |
| 2012.8 | 国家能源局 | 《可再生能源发展“十二五”规划》 | 推进以农林剩余物为主要原料的纤维素乙醇和生物质热化学转化制备液体燃料示范工程;到2015年,生物燃料乙醇年利用量350万~400万吨,生物柴油和航空生物燃料年利用量100万吨 |
| 2016.10 | 国家能源局 | 《生物质能发展“十三五”规划》 | 大力发展纤维乙醇,开展先进生物燃料产业示范项目建设;适度发展木薯等非粮燃料乙醇;到2020年,生物液体燃料年利用量达到600万吨以上 |
| 2016.12 | 国家发展改革委 | 《可再生能源发展“十三五”规划》 | 推进生物液体燃料产业化发展,稳步扩大燃料乙醇生产和消费;大力发展纤维乙醇,适度发展木薯、甜高粱等燃料乙醇项目 |
| 2017.9 | 国家发展改革委、国家能源局等十五部门 | 《关于扩大生物燃料乙醇生产和推广使用车用乙醇汽油的实施方案》 | 适度发展粮食燃料乙醇,科学合理把握粮食燃料乙醇总量,大力发展纤维素燃料乙醇等先进生物液体燃料;到2025年,力争纤维素乙醇实现规模化生产,形成更加完善的市场化运行机制 |
| 2020.12 | 中华人民共和国国务院新闻办公室 | 《新时代的中国能源发展》 | 建设多元清洁的能源供应体系,坚持不与人争粮、不与粮争地的原则,严格控制燃料乙醇加工产能扩张,推进非粮生物液体燃料技术产业化发展 |
| 2021.4 | 国家能源局 | 《2021年能源工作指导意见》 | 大力发展非化石能源,有序推进生物质能开发利用,加快推进纤维素等非粮生物燃料乙醇产业示范 |
| 2021.10 | 国务院 | 《2030年前碳达峰行动方案》 | 积极扩大电力、氢能、天然气、先进生物液体燃料等新能源、清洁能源在交通运输领域应用,大力推进先进生物液体燃料、可持续航空燃料等替代传统燃油 |
| 2022.2 | 国家发展改革委、国家能源局 | 《关于完善能源绿色低碳转型体制机制和政策措施的意见》 | 建立清洁低碳能源产业链供应链协同创新机制,加快纤维素等非粮生物燃料乙醇、生物航空煤油等先进可再生能源燃料关键技术协同攻关及产业化示范 |
| 2022.2 | 中共中央、国务院 | 《中共中央 国务院关于做好2022年全面推进乡村振兴重点工作的意见》 | 统筹做好重要农产品调控,严格控制以玉米为原料的燃料乙醇加工 |
| 2022.3 | 国家发展改革委、国家能源局 | 《“十四五”现代能源体系规划》 | 加强安全战略技术储备,按照不与粮争地、不与人争粮的原则,提升燃料乙醇综合效益,大力发展纤维素燃料乙醇、生物柴油、生物航空煤油等非粮生物燃料 |
| 2022.5 | 国家发展改革委 | 《“十四五”生物经济发展规划》 | 积极开发生物能源,加快生物天然气、纤维素乙醇、藻类生物燃料等关键技术研发和设备制造;在城乡有机废弃物集中地区开展纤维素乙醇、生物柴油、生物天然气产业示范,打通生物质原料收集、有机肥生产使用等重要环节,提高生物燃料生产规模 |
| 2022.6 | 国家发展改革委、国家能源局等九部门 | 《“十四五”可再生能源发展规划》 | 大力发展非粮生物质液体燃料,积极发展纤维素等非粮燃料乙醇,鼓励开展醇、电、气、肥等多联产示范;持续推进燃料乙醇、生物柴油等清洁液体燃料商业化应用,扩大在重型道路交通、航空和航运中对汽油柴油的规模化替代 |
| 2024.3 | 国家能源局 | 《2024年能源工作指导意见》 | 加快培育能源新业态新模式,稳步推进绿色清洁液体燃料发展,有序推动纤维素等非粮燃料乙醇技术创新和产业化,抓好生物柴油推广应用试点示范 |
| 2024.8 | 国家能源局 | 《关于组织开展绿色液体燃料技术攻关和产业化试点的通知 (征求意见稿)》 | 拟组织开展绿色液体燃料技术攻关和产业化试点,并明确绿色液体燃料是以生物柴油、可持续航煤、生物燃料乙醇、可再生甲醇、可再生氨等为代表的可再生能源 |
| 公司名称 | 建成投产年份 | 产品规模及投资 | 原料及技术方案 | 生产现状 |
|---|---|---|---|---|
| 中粮生化能源(肇东)有限公司 | 2006 | 乙醇500t/a 总投资4.8×107CNY | 玉米秸秆;连续汽爆、酶水解、发酵、蒸馏 | 目前仍在间断运行实验,未见投产 |
| 安徽丰原集团有限公司 | 2009 | 乙醇5000t/a 乳酸1000t/a | 玉米秸秆;自有酶制剂和混合糖发酵技术 | 现阶段未见其纤维素乙醇规模化生产 |
| 济南圣泉集团股份有限公司 | 2012 | 乙醇2×104t/a | 玉米秸秆、玉米芯;“圣泉生物溶剂法”秸秆精炼一体化技术,实现纤维素、半纤维素和木质素高效分离,其中纤维素利用酶水解发酵生产乙醇 | 2023年全球首个百万吨级“圣泉法”植物秸秆精炼一体化项目(一期),在石油名城黑龙江大庆市全面投产,每年可实现各类植物秸秆处理量5×105t;目前未见其纤维素乙醇生产 |
| 山东龙力生物科技股份有限公司 | 2012 | 乙醇5.15×104t/a 液态二氧化碳2.5×104t/a 总投资1.66×108CNY | 玉米芯、玉米秸秆;稀酸分离半纤维素、斜卧青霉工业菌株就地生产廉价纤维素酶技术、同步浓醪发酵 | 2018年龙力生物“玉米全株生物质综合利用暨年产1×105t纤维素燃料乙醇及系列衍生产品项目”被列入山东省新旧动能转换重大项目库;现阶段未见其纤维素乙醇规模化生产 |
| 河南天冠企业集团有限公司 | 2013 | 乙醇3×104t/a | 玉米秸秆、小麦秸秆;间歇汽爆、纤维素酶水解、C6糖发酵、C5糖生产沼气 | 纤维素乙醇醇电联产,现阶段未见其纤维素乙醇规模化生产 |
| 美洁国祯(安徽)绿色炼化有限公司 | 2020 (完成签约) | 乙醇1×105t/a 总投资2.2×109CNY | 小麦秸秆、玉米秸秆科;莱恩sunliquid®纤维素乙醇技术 | 未见建厂 |
| 河北易高生物燃料有限公司 | 2021 | 乙醇2.5×104t/a 糠醛2.7×104t/a 总投资1.75×109CNY | 玉米芯;汽爆、糖化、残渣酶水解、发酵、精馏 | 2021年2.4×105t/a生物质综合利用项目(一期,投资5×108CNY)酶解及发酵工段、乙醇工段成功运行并产出合格乙醇,标志着全球最大纤维素乙醇项目开车成功;现阶段未见其纤维素乙醇规模化生产 |
| 国投生物质燃料(海伦)有限公司 | 2022 | 乙醇3×104t/a 总投资4.5×108CNY | 玉米秸秆;脉冲汽爆、酶水解、发酵、精馏脱水、分离蒸发 | 2024年万吨级纤维素乙醇示范装置首台(套)完成单线168h运行测试,实现设计负荷连续稳定运行,产品质量完全达到工艺要求 |
| 公司名称 | 建成投产年份 | 产品规模及投资 | 原料及技术方案 | 生产现状 |
|---|---|---|---|---|
| 中粮生化能源(肇东)有限公司 | 2006 | 乙醇500t/a 总投资4.8×107CNY | 玉米秸秆;连续汽爆、酶水解、发酵、蒸馏 | 目前仍在间断运行实验,未见投产 |
| 安徽丰原集团有限公司 | 2009 | 乙醇5000t/a 乳酸1000t/a | 玉米秸秆;自有酶制剂和混合糖发酵技术 | 现阶段未见其纤维素乙醇规模化生产 |
| 济南圣泉集团股份有限公司 | 2012 | 乙醇2×104t/a | 玉米秸秆、玉米芯;“圣泉生物溶剂法”秸秆精炼一体化技术,实现纤维素、半纤维素和木质素高效分离,其中纤维素利用酶水解发酵生产乙醇 | 2023年全球首个百万吨级“圣泉法”植物秸秆精炼一体化项目(一期),在石油名城黑龙江大庆市全面投产,每年可实现各类植物秸秆处理量5×105t;目前未见其纤维素乙醇生产 |
| 山东龙力生物科技股份有限公司 | 2012 | 乙醇5.15×104t/a 液态二氧化碳2.5×104t/a 总投资1.66×108CNY | 玉米芯、玉米秸秆;稀酸分离半纤维素、斜卧青霉工业菌株就地生产廉价纤维素酶技术、同步浓醪发酵 | 2018年龙力生物“玉米全株生物质综合利用暨年产1×105t纤维素燃料乙醇及系列衍生产品项目”被列入山东省新旧动能转换重大项目库;现阶段未见其纤维素乙醇规模化生产 |
| 河南天冠企业集团有限公司 | 2013 | 乙醇3×104t/a | 玉米秸秆、小麦秸秆;间歇汽爆、纤维素酶水解、C6糖发酵、C5糖生产沼气 | 纤维素乙醇醇电联产,现阶段未见其纤维素乙醇规模化生产 |
| 美洁国祯(安徽)绿色炼化有限公司 | 2020 (完成签约) | 乙醇1×105t/a 总投资2.2×109CNY | 小麦秸秆、玉米秸秆科;莱恩sunliquid®纤维素乙醇技术 | 未见建厂 |
| 河北易高生物燃料有限公司 | 2021 | 乙醇2.5×104t/a 糠醛2.7×104t/a 总投资1.75×109CNY | 玉米芯;汽爆、糖化、残渣酶水解、发酵、精馏 | 2021年2.4×105t/a生物质综合利用项目(一期,投资5×108CNY)酶解及发酵工段、乙醇工段成功运行并产出合格乙醇,标志着全球最大纤维素乙醇项目开车成功;现阶段未见其纤维素乙醇规模化生产 |
| 国投生物质燃料(海伦)有限公司 | 2022 | 乙醇3×104t/a 总投资4.5×108CNY | 玉米秸秆;脉冲汽爆、酶水解、发酵、精馏脱水、分离蒸发 | 2024年万吨级纤维素乙醇示范装置首台(套)完成单线168h运行测试,实现设计负荷连续稳定运行,产品质量完全达到工艺要求 |
| 预处理技术 | 优点 | 缺点 |
|---|---|---|
| 物理预处理 | ||
| 研磨剪切 | 减小生物质颗粒大小,改变生物质超微结构,适用多种生物质 | 无法对组分进行有效分离,工艺运行能耗高 |
| 机械挤压 | 改变生物质理化特性,工艺设备操作简单,增加纤维素酶可及性 | 初期设备投入大,工艺运行能耗高,生物质适用范围较小 |
| 超声破碎 | 破坏生物质内部结构,降低生物质比表面积,环境友好、无污染 | 对生物质超微结构影响有限,初期设备投入大 |
| 电磁辐射 | 热传递效率高,工艺设备操作简单 | 初期设备投资高,工艺运行能耗高 |
| 化学预处理 | ||
| 酸 | 预处理效率高,可直接获得单糖,提高纤维素酶可及性 | 对设备腐蚀性强,试剂回收利用能耗高,易产生大量抑制物,有环境污染的风险 |
| 碱 | 糖降解现象不明显,试剂回收利用较简单 | 预处理时间长,会损失部分半纤维素,有环境污染的风险 |
| 氧化 | 几乎不产生抑制物,有效去除木质素、半纤维素 | 氧化剂用量大、成本高,会损失部分半纤维素 |
| 金属盐 | 破坏生物质内部结构,工艺设备操作简单 | 金属盐试剂残留高,环境污染风险高 |
| 非水溶剂 | 破坏生物质内部结构,试剂回收效率高,生物质组分均能保留 | 生物毒害性高,对设备腐蚀性强,环境污染风险高,设备、试剂成本高 |
| 生物预处理 | 反应条件温和、专一性强,反应过程能耗低,不会环境污染 | 降解微生物种类少,酶活力低,预处理时间长,易造成可发酵糖损失 |
| 联合预处理 | 几乎不产生抑制物,打破单一方式局限性,充分发挥多种工艺优点,提高纤维素酶可及性 | 多段工艺导致成本上升,生物质适用性降低 |
| 预处理技术 | 优点 | 缺点 |
|---|---|---|
| 物理预处理 | ||
| 研磨剪切 | 减小生物质颗粒大小,改变生物质超微结构,适用多种生物质 | 无法对组分进行有效分离,工艺运行能耗高 |
| 机械挤压 | 改变生物质理化特性,工艺设备操作简单,增加纤维素酶可及性 | 初期设备投入大,工艺运行能耗高,生物质适用范围较小 |
| 超声破碎 | 破坏生物质内部结构,降低生物质比表面积,环境友好、无污染 | 对生物质超微结构影响有限,初期设备投入大 |
| 电磁辐射 | 热传递效率高,工艺设备操作简单 | 初期设备投资高,工艺运行能耗高 |
| 化学预处理 | ||
| 酸 | 预处理效率高,可直接获得单糖,提高纤维素酶可及性 | 对设备腐蚀性强,试剂回收利用能耗高,易产生大量抑制物,有环境污染的风险 |
| 碱 | 糖降解现象不明显,试剂回收利用较简单 | 预处理时间长,会损失部分半纤维素,有环境污染的风险 |
| 氧化 | 几乎不产生抑制物,有效去除木质素、半纤维素 | 氧化剂用量大、成本高,会损失部分半纤维素 |
| 金属盐 | 破坏生物质内部结构,工艺设备操作简单 | 金属盐试剂残留高,环境污染风险高 |
| 非水溶剂 | 破坏生物质内部结构,试剂回收效率高,生物质组分均能保留 | 生物毒害性高,对设备腐蚀性强,环境污染风险高,设备、试剂成本高 |
| 生物预处理 | 反应条件温和、专一性强,反应过程能耗低,不会环境污染 | 降解微生物种类少,酶活力低,预处理时间长,易造成可发酵糖损失 |
| 联合预处理 | 几乎不产生抑制物,打破单一方式局限性,充分发挥多种工艺优点,提高纤维素酶可及性 | 多段工艺导致成本上升,生物质适用性降低 |
| 1 | 孙贤胜, 戚永颖, 孙娜. 全球能源转型之路曲折迈进——2023年全球油气市场的“变”与“不变”[J]. 国际石油经济, 2024, 32(1): 17-24. |
| SUN Xiansheng, QI Yongying, SUN Na. Global energy transition: A twisting path—Changes and constants in 2023 global oil and gas markets[J]. International Petroleum Economics, 2024, 32(1): 17-24. | |
| 2 | WANG Tong, ZHOU Tuo, LI Chaoran, et al. Development status and prospects of biomass energy in China[J]. Energies, 2024, 17(17): 4484. |
| 3 | 谭天伟. 生物制造助力加快培育新质生产力[J]. 人民论坛·学术前沿, 2024(16): 5-12. |
| TAN Tianwei. Accelerate the cultivation of new quality productive forces with bio-manufacturing[J]. Frontiers, 2024(16): 5-12. | |
| 4 | 刘蕾, 杨绍鹏. 纤维素乙醇产业发展面临的挑战与对策建议[J]. 中国经贸导刊, 2024(17): 82-84. |
| LIU Lei, YANG Shaopeng. Challenges and countermeasures for the development of cellulosic ethanol industry[J]. China Economic & Trade Herald, 2024(17): 82-84. | |
| 5 | CHATTERJEE Biswabandhu, MAZUMDER Debabrata. A critical review of the advances in valorizing agro-industrial wastes through mixed culture fermentation[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111838. |
| 6 | 牛文娟. 主要农作物秸秆组成成分和能源利用潜力[D]. 北京: 中国农业大学, 2015. |
| NIU Wenjuan. Physicochemical composition and energy potential of main crop straw and stalk[D]. Beijing: China Agricultural University, 2015. | |
| 7 | SAAD Marcelo B W, GONÇALVES Adilson R. Industrial pretreatment of lignocellulosic biomass: A review of the early and recent efforts to scale-up pretreatment systems and the current challenges[J]. Biomass and Bioenergy, 2024, 190: 107426. |
| 8 | SRINIVASAN Shobana, VENKATACHALAM Sivakumar. An energy-efficient process for enhanced production of bioethanol from sorghum biomass: A futuristic approach towards circular economy[J]. Biomass Conversion and Biorefinery, 2025, 15(1): 1581-1592. |
| 9 | TUNIO Azhar Ali, NAQVI Muhammad, QURESHI Abdul Sattar, et al. Multi enzyme production from mixed untreated agricultural residues applied in enzymatic saccharification of lignocellulosic biomass for biofuel[J]. Process Safety and Environmental Protection, 2024, 186: 540-551. |
| 10 | GU Hanqi, ZHANG Jian, BAO Jie. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues[J]. Bioresource Technology, 2014, 157: 6-13. |
| 11 | 李海军. 中粮集团年产500吨纤维素酒精项目在黑龙江省肇东市试车成功[J]. 黑龙江粮食, 2007, (1): 7. |
| LI Haijun. COFCO’s annual output of 500t of cellulosic alcohol project was successfully tested in Zhaodong City, Heilongjiang Province[J]. Journal of Heilongjiang Grain, 2007, (1): 7. | |
| 12 | 天冠集团万吨级纤维乙醇项目通过验收[J]. 河南化工, 2011(23): 6. |
| Tianguan’s 10000 t fiber ethanol project passes acceptance inspection[J]. Henan Chemical Industry, 2011(23): 6. | |
| 13 | 舟丹. 龙力生物首家生产二代纤维素燃料乙醇[J]. 中外能源, 2018, 23(11): 59. |
| ZHOU Dan. Longlive Bio is the first to produce the second generation cellulose fuel ethanol[J]. Sino-Global Energy, 2018, 23(11): 59. | |
| 14 | 金涛. 我国纤维素乙醇技术发展中的问题及对策[J]. 河南科技, 2018 (13): 46-50. |
| JIN Tao. Problems and countermeasures of the development of cellulosic ethanol technology in China[J]. Henan Science and Technology, 2018 (13): 46-50. | |
| 15 | 关宗. 最大纤维素乙醇项目成功开车[J]. 中国石油和化工产业观察, 2021 (12): 14-15. |
| GUAN Zong. The largest cellulosic ethanol project started successfully[J]. China Petrochemical Industry Observer, 2021 (12): 14-15. | |
| 16 | 宁艳春, 马迎雪, 伊凤, 等. 燃料乙醇技术发展现状及建议[J]. 化学工业, 2024, 42(3): 58-61. |
| NING Yanchun, MA Yingxue, YI Feng, et al. Technology development situation and suggestions of fuel ethanol[J]. Chemical Industry, 2024, 42(3): 58-61. | |
| 17 | 陈相雪. 木质纤维素预处理工艺及利用其生产秸秆乙醇的研究[D]. 南京: 南京理工大学, 2022. |
| CHEN Xiangxue. Study on lignocellulose pretreatment and ethanol production from agricultural stover[D]. Nanjing: Nanjing University of Science and Technology, 2022. | |
| 18 | MANKAR Akshay R, PANDEY Ashish, MODAK Arindam, et al. Pretreatment of lignocellulosic biomass: A review on recent advances[J]. Bioresource Technology, 2021, 334: 125235. |
| 19 | YANG Bin, WYMAN Charles E. Pretreatment: The key to unlocking low-cost cellulosic ethanol[J]. Biofuels, Bioproducts and Biorefining, 2008, 2(1): 26-40. |
| 20 | 赵烁, 李莹, 王震, 等. 木质纤维素预处理方法的研究进展[J]. 中国造纸, 2024, 43(8): 29-38. |
| ZHAO Shuo, LI Ying, WANG Zhen, et al. Research progress of lignocellulose pretreatment methods[J]. China Pulp & Paper, 2024, 43(8): 29-38. | |
| 21 | ZAKARIA Mohd Rafein, FUJIMOTO Shinji, HIRATA Satoshi, et al. Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis[J]. Applied Biochemistry and Biotechnology, 2014, 173(7): 1778-1789. |
| 22 | KUMAR Bikash, BHARDWAJ Nisha, AGRAWAL Komal, et al. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept[J]. Fuel Processing Technology, 2020, 199: 106244. |
| 23 | MORO Mariana Kuster, TEIXEIRA Ricardo Sposina Sobral, SILVA Ayla Sant’Ana DA, et al. Continuous pretreatment of sugarcane biomass using a twin-screw extruder[J]. Industrial Crops and Products, 2017, 97: 509-517. |
| 24 | Victor Zhenquan ONG, WU Ta Yeong. An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 109924. |
| 25 | WANG Danli, YAN Lufeng, MA Xiaobin, et al. Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems[J]. International Journal of Biological Macromolecules, 2018, 119: 453-461. |
| 26 | HASSAN Shady S, WILLIAMS Gwilym A, JAISWAL Amit K. Emerging technologies for the pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2018, 262: 310-318. |
| 27 | OOSHIMA H, ASO K, HARANO Y, et al. Microwave treatment of cellulosic materials for their enzymatic hydrolysis[J]. Biotechnology Letters, 1984, 6(5): 289-294. |
| 28 | KAPOOR Khushboo, GARG Neelima, DIWAN R K, et al. Study the effect of gamma radiation pretreatment of sugarcane bagasse on its physcio-chemical morphological and structural properties[J]. Radiation Physics and Chemistry, 2017, 141: 190-195. |
| 29 | FEI Xionghui, JIA Wenbao, WANG Junqi, et al. Study on enzymatic hydrolysis efficiency and physicochemical properties of cellulose and lignocellulose after pretreatment with electron beam irradiation[J]. International Journal of Biological Macromolecules, 2020, 145: 733-739. |
| 30 | Walter DEN, SHARMA Virender K, LEE Mengshan, et al. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value-added chemicals[J]. Frontiers in Chemistry, 2018, 6: 141. |
| 31 | SANTOS Chayenne Correia, DE SOUZA Wanderley, Celso SANT’ANNA, et al. Elephant grass leaves have lower recalcitrance to acid pretreatment than stems, with higher potential for ethanol production[J]. Industrial Crops and Products, 2018, 111: 193-200. |
| 32 | WOICIECHOWSKI Adenise Lorenci, NETO Carlos José Dalmas, DE SOUZA VANDENBERGHE Luciana Porto, et al. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance―Conventional processing and recent advances[J]. Bioresource Technology, 2020, 304: 122848. |
| 33 | NAGARAJAN Sanjay, SKILLEN Nathan C, IRVINE John T S, et al. Cellulose Ⅱ as bioethanol feedstock and its advantages over native cellulose[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 182-192. |
| 34 | FAN Zhaodi, LIN Jianghai, WU Jiahui, et al. Vacuum-assisted black liquor-recycling enhances the sugar yield of sugarcane bagasse and decreases water and alkali consumption[J]. Bioresource Technology, 2020, 309: 123349. |
| 35 | ZHOU Ziyuan, OUYANG Denghao, LIU Dehua, et al. Oxidative pretreatment of lignocellulosic biomass for enzymatic hydrolysis: Progress and challenges[J]. Bioresource Technology, 2023, 367: 128208. |
| 36 | 袁雨. 两种氧化预处理下不同植物生物质基质特性及酶解产糖差异研究[D]. 武汉: 华中农业大学, 2015. |
| YUAN Yu. The study on difference in substrate characteristics and enzymatic hydrolysis performance of different plant biomass under two kinds of oxidation pretreatment[D]. Wuhan: Huazhong Agricultural University, 2015. | |
| 37 | 乔怡娜. 金属盐对玉米秸秆水解和厌氧产酸的影响及作用机制研究[D]. 天津: 天津大学, 2020. |
| QIAO Yina. Effect of metal salt on hydrolysis and anaerobic acidogenesis of corn straw and its mechanism[D]. Tianjin: Tianjin University, 2020. | |
| 38 | 韩明阳, 乔慧, 付佳铭, 等. 非水溶剂预处理木质纤维原料研究进展[J]. 化工进展, 2022, 41(8): 4086-4097. |
| HAN Mingyang, QIAO Hui, FU Jiaming, et al. Research progress of non-aqueous solvents on the pretreatment of lignocellulose[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. | |
| 39 | 谢国平, 谭雪松, 刘鹏, 等. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358. |
| XIE Guoping, TAN Xuesong, LIU Peng, et al. Research progress of lignocellulosic pretreatment based on bio-based derived organic solvents[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3347-3358. | |
| 40 | YAO Fengpei, SHEN Fei, WAN Xue, et al. High yield and high concentration glucose production from corncob residues after tetrahydrofuran+H2O co-solvent pretreatment and followed by enzymatic hydrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110107. |
| 41 | BHATIA Shashi Kant, JAGTAP Sujit Sadashiv, BEDEKAR Ashwini Ashok, et al. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges[J]. Bioresource Technology, 2020, 300: 122724. |
| 42 | 李苏佳, 李宁杰, 何闽祖, 等. 离子液体在木质纤维素预处理中的应用[J]. 轻工科技, 2023, 39(2): 88-91. |
| LI Sujia, LI Ningjie, HE Minzu, et al. Application of ionic liquid in lignocellulose pretreatment[J]. Light Industry Science and Technology, 2023, 39(2): 88-91. | |
| 43 | SEMERCI Isik, ERSAN Gulsah. Hornbeam pretreatment with protic ionic liquids: Cation, particle size, biomass loading and recycling effects[J]. Industrial Crops and Products, 2021, 159: 113021. |
| 44 | 赵淑蘅, 李卓洁, 胡建军, 等. 低共熔溶剂应用于木质纤维素预处理的研究进展[J]. 林产化学与工业, 2023, 43(6): 130-138. |
| ZHAO Shuheng, LI Zhuojie, HU Jianjun, et al. Research progress on the application of deep eutectic solvent in lignocellulose pretreatment[J]. Chemistry and Industry of Forest Products, 2023, 43(6): 130-138. | |
| 45 | PROCENTESE Alessandra, RAGANATI Francesca, OLIVIERI Giuseppe, et al. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production[J]. Bioresource Technology, 2017, 243: 464-473. |
| 46 | WU Zengyou, PENG Kun, ZHANG Yin, et al. Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review[J]. Materials Today Bio, 2022, 16: 100445. |
| 47 | BAKSI S, SAHA D, SAHA S, et al. Pre-treatment of lignocellulosic biomass: Review of various physico-chemical and biological methods influencing the extent of biomass depolymerization[J]. International Journal of Environmental Science and Technology, 2023, 20(12): 13895-13922. |
| 48 | 迟雪. 水稻秸秆丁酸-丁醇分步发酵系统的构建与效能[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
| CHI Xue. Construction and performance of a staged butyrate-butanol fermentation process with rice straw as substrate[D]. Harbin: Harbin Institute of Technology, 2018. | |
| 49 | WAN Caixia, LI Yebo. Fungal pretreatment of lignocellulosic biomass[J]. Biotechnology Advances, 2012, 30(6): 1447-1457. |
| 50 | 周晓洁, 赵国琦, 程志强, 等. 白腐真菌预处理农作物秸秆的研究进展[J]. 动物营养学报, 2024, 36(8): 4823-4834. |
| ZHOU Xiaojie, ZHAO Guoqi, CHENG Zhiqiang, et al. Research progress on pretreatment of crop straw with white rot fungi[J]. Chinese Journal of Animal Nutrition, 2024, 36(8): 4823-4834. | |
| 51 | WAN Caixia, LI Yebo. Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production[J]. Bioresource Technology, 2010, 101(16): 6398-6403. |
| 52 | HENDRIKS A T W M, ZEEMAN G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10-18. |
| 53 | 贾丽萍, 姚秀清, 杨磊, 等. 木质纤维素的预处理技术进展[J]. 纤维素科学与技术, 2022, 30(2): 72-80. |
| JIA Liping, YAO Xiuqing, YANG Lei, et al. Advances in pretreatment technology of lignocellulose[J]. Journal of Cellulose Science and Technology, 2022, 30(2): 72-80. | |
| 54 | CHEN Sitong, XU Zhaoxian, LI Xiujuan, et al. Integrated bioethanol production from mixtures of corn and corn stover[J]. Bioresource Technology, 2018, 258: 18-25. |
| 55 | CAO Yulian, LIU Haifeng, SHAN Junqiang, et al. Ammonia-mechanical pretreatment of wheat straw for the production of lactic acid and high-quality lignin[J]. Fermentation, 2023, 9(2): 177. |
| 56 | RÍOS-GONZÁLEZ Leopoldo J, MEDINA-MORALES Miguel A, RODRÍGUEZ-DE LA GARZA José A, et al. Comparison of dilute acid pretreatment of agave assisted by microwave versus ultrasound to enhance enzymatic hydrolysis[J]. Bioresource Technology, 2021, 319: 124099. |
| 57 | YU Xiaojie, BAO Xinjie, ZHOU Cunshan, et al. Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose[J]. Ultrasonics Sonochemistry, 2018, 41: 410-418. |
| 58 | KUMAR Bikash, BHARDWAJ Nisha, VERMA Pradeep. Pretreatment of rice straw using microwave assisted FeCl3-H3PO4 system for ethanol and oligosaccharides generation[J]. Bioresource Technology Reports, 2019, 7: 100295. |
| 59 | TANG Chenglun, CHEN Yanjun, LIU Jun, et al. Sustainable biobutanol production using alkali-catalyzed organosolv pretreated cornstalks[J]. Industrial Crops and Products, 2017, 95: 383-392. |
| 60 | ZHONG Lingxia, ZHANG Xiao, TANG Chenglun, et al. Hydrazine hydrate and organosolv synergetic pretreatment of corn stover to enhance enzymatic saccharification and co-production of high-quality antioxidant lignin[J]. Bioresource Technology, 2018, 268: 677-683. |
| 61 | MEENAKSHISUNDARAM S, FAYEULLE A, LEONARD E, et al. Fiber degradation and carbohydrate production by combined biological and chemical/physicochemical pretreatment methods of lignocellulosic biomass―A review[J]. Bioresource Technology, 2021, 331: 125053. |
| 62 | REN Haiwei, SUN Wenli, WANG Zhiye, et al. Enhancing the enzymatic saccharification of grain stillage by combining microwave-assisted hydrothermal irradiation and fungal pretreatment[J]. ACS Omega, 2020, 5(22): 12603-12614. |
| 63 | MARTÍNEZ-PATIÑO José Carlos, LU-CHAU Thelmo A, Beatriz GULLÓN, et al. Application of a combined fungal and diluted acid pretreatment on olive tree biomass[J]. Industrial Crops and Products, 2018, 121: 10-17. |
| 64 | ZHANG Kejing, SI Mengying, LIU Dan, et al. A bionic system with Fenton reaction and bacteria as a model for bioprocessing lignocellulosic biomass[J]. Biotechnology for Biofuels, 2018, 11: 31. |
| 65 | KANDHOLA Gurshagan, RAJAN Kalavathy, Nicole LABBÉ, et al. Beneficial effects of Trametes versicolor pretreatment on saccharification and lignin enrichment of organosolv-pretreated pinewood[J]. RSC Advances, 2017, 7(72): 45652-45661. |
| 66 | 杜若愚. 木质纤维素预处理和酶水解回收的过程调控与强化研究[D]. 天津: 天津大学, 2012. |
| DU Ruoyu. Lignocellulose pretreatment, cellulase hydrolysis and recycling: Process control and intensification[D]. Tianjin: Tianjin University, 2012. | |
| 67 | TOOR Manju, KUMAR Smita S, MALYAN Sandeep K, et al. An overview on bioethanol production from lignocellulosic feedstocks[J]. Chemosphere, 2020, 242: 125080. |
| 68 | BASERA Priyanka, CHAKRABORTY Shuchishloka, SHARMA Neha. Lignocellulosic biomass: Insights into enzymatic hydrolysis, influential factors, and economic viability[J]. Discover Sustainability, 2024, 5(1): 311. |
| 69 | LI Xiang, ZHENG Yi. Lignin-enzyme interaction: Mechanism, mitigation approach, modeling, and research prospects[J]. Biotechnology Advances, 2017, 35(4): 466-489. |
| 70 | SZABO Orsolya Erzsebet, CSISZAR Emilia. Some factors affecting efficiency of the ultrasound-aided enzymatic hydrolysis of cotton cellulose[J]. Carbohydrate Polymers, 2017, 156: 357-363. |
| 71 | LUO Mianxing, ZHANG Meng, CHI Changbiao, et al. Affinity-assisted covalent self-assembly of PduQ-SpyTag and Nox-SpyCatcher to construct multi-enzyme complexes on the surface of magnetic microsphere modified with chelated Ni2+ [J]. International Journal of Biological Macromolecules, 2024, 261: 129365. |
| 72 | MENG Dongdong, WANG Juan, YOU Chun. The properties of the linker in a mini-scaffoldin influence the catalytic efficiency of scaffoldin-mediated enzyme complexes[J]. Enzyme and Microbial Technology, 2020, 133: 109460. |
| 73 | 杜济良, 祁琪, 刘涵, 等. 复合功能嵌合纤维小体空间结构优化及性能研究[J]. 太阳能学报, 2022, 43(6): 246-250. |
| DU Jiliang, QI Qi, LIU Han, et al. Spatial structure optimization and performance research of complex functional chimeric fibrous corpuscle[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 246-250. | |
| 74 | CHANG Jui-Jen, ANANDHARAJ Marimuthu, Cheng-Yu HO, et al. Biomimetic strategy for constructing Clostridium thermocellum cellulosomal operons in Bacillus subtilis [J]. Biotechnology for Biofuels, 2018, 11: 157. |
| 75 | 李秀娟, 王明慧, 乔杰, 等. 先进生物技术在纤维素燃料乙醇中的应用及展望[J]. 生物加工过程, 2023, 21(5): 554-563. |
| LI Xiujuan, WANG Minghui, QIAO Jie, et al. Applications and perspectives of advanced biotechnology in cellulosic fuel ethanol[J]. Chinese Journal of Bioprocess Engineering, 2023, 21(5): 554-563. | |
| 76 | XU Chaozhong, TONG Shanshan, SUN Liqun, et al. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review[J]. Carbohydrate Polymers, 2023, 321: 121319. |
| 77 | 万娟娟, 刘旭峰, 戎海波, 等. 酶固定化技术及固定化酶应用的研究进展[J]. 现代化工, 2024, 44(S1): 73-79. |
| WAN Juanjuan, LIU Xufeng, RONG Haibo, et al. An overview of enzyme immobilizing technologies and application of immobilized enzymes[J]. Modern Chemical Industry, 2024, 44(S1): 73-79. | |
| 78 | ZHU Xing, TIAN Yi, HE Bin. Modification of cellulase with smart-green polymers to promote low-cost and cleaner production of cellulosic ethanol[J]. Renewable Energy, 2023, 205: 525-533. |
| 79 | WANG Yang, FENG Chenyu, GUO Rongxin, et al. Cellulase immobilized by sodium alginate-polyethylene glycol-chitosan for hydrolysis enhancement of microcrystalline cellulose[J]. Process Biochemistry, 2021, 107: 38-47. |
| 80 | AHMAD Razi, KHARE Sunil Kumar. Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis[J]. Bioresource Technology, 2018, 252: 72-75. |
| 81 | SADEGHI Meisam, MOGHIMIFAR Zahra, JAVADIAN Hamedreza. Fe3O4@SiO2 nanocomposite immobilized with cellulase enzyme: Stability determination and biological activity[J]. Chemical Physics Letters, 2023, 811: 140161. |
| 82 | ABDU YUSUF Abdulfatah, INAMBAO Freddie L. Bioethanol production techniques from lignocellulosic biomass as alternative fuel: A review[J]. International Journal of Mechanical Engineering and Technology, 2019, 10(3). |
| 83 | GUO Hongliang, ZHAO Ying, CHANG Jo-Shu, et al. Inhibitor formation and detoxification during lignocellulose biorefinery: A review[J]. Bioresource Technology, 2022, 361: 127666. |
| 84 | 杨莉, 谭丽萍, 刘同军. 木质纤维素预处理抑制物产生及脱除方法的研究进展[J]. 生物工程学报, 2021, 37(1): 15-29. |
| YANG Li, TAN Liping, LIU Tongjun. Progress in detoxification of inhibitors generated during lignocellulose pretreatment[J]. Chinese Journal of Biotechnology, 2021, 37(1): 15-29. | |
| 85 | KUMAR Vinod, YADAV Sudesh K, KUMAR Jitendra, et al. A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment[J]. Bioresource Technology, 2020, 299: 122633. |
| 86 | HONG Kuk-Ki, NIELSEN Jens. Metabolic engineering of saccharomyces cerevisiae: A key cell factory platform for future biorefineries[J]. Cellular and Molecular Life Sciences, 2012, 69(16): 2671-2690. |
| 87 | LIAN Jiazhang, MISHRA Shekhar, ZHAO Huimin. Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications[J]. Metabolic Engineering, 2018, 50: 85-108. |
| 88 | XIA Juan, YANG Yongfu, LIU Chenguang, et al. Engineering Zymomonas mobilis for robust cellulosic ethanol production[J]. Trends in Biotechnology, 2019, 37(9): 960-972. |
| 89 | WIRAWAN Ferdian, CHENG Chieh-Lun, Yung-Chung LO, et al. Continuous cellulosic bioethanol co-fermentation by immobilized Zymomonas mobilis and suspended Pichia stipitis in a two-stage process[J]. Applied Energy, 2020, 266: 114871. |
| 90 | YANG Shihui, VERA Jessica M, GRASS Jeff, et al. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032[J]. Biotechnology for Biofuels, 2018, 11: 125. |
| 91 | NAGARAJAN Dillirani, LEE Duu-Jong, CHANG Jo-Shu. Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(28): 14362-14379. |
| 92 | PHWAN Chai Kee, Hwai Chyuan ONG, CHEN Wei-Hsin, et al. Overview: Comparison of pretreatment technologies and fermentation processes of bioethanol from microalgae[J]. Energy Conversion and Management, 2018, 173: 81-94. |
| 93 | JAMBO Siti Azmah, ABDULLA Rahmath, AZHAR Siti Hajar Mohd, et al. A review on third generation bioethanol feedstock[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 756-769. |
| 94 | LI Kexun, LIU Shun, LIU Xianhua. An overview of algae bioethanol production[J]. International Journal of Energy Research, 2014, 38(8): 965-977. |
| 95 | MARGEOT Antoine, Bärbel HAHN-HAGERDAL, EDLUND Maria, et al. New improvements for lignocellulosic ethanol[J]. Current Opinion in Biotechnology, 2009, 20(3): 372-380. |
| 96 | XIROS Charilaos, TOPAKAS Evangelos, CHRISTAKOPOULOS Paul. Hydrolysis and fermentation for cellulosic ethanol production[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2(6): 633-654. |
| 97 | BALAT Mustafa. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review[J]. Energy Conversion and Management, 2011, 52(2): 858-875. |
| 98 | ZHANG Yiwen, YANG Junjie, QIAN Fenghui, et al. Engineering a xylose fermenting yeast for lignocellulosic ethanol production[J]. Nature Chemical Biology, 2024: 1-8. |
| 99 | LAM Man Kee, LEE Keat Teong. Bioethanol production from microalgae[J]. Handbook of Marine Microalgae, 2015: 197-208. |
| 100 | LIU Chenguang, XIAO Yi, XIA Xiaoxia, et al. Cellulosic ethanol production: Progress, challenges and strategies for solutions[J]. Biotechnology Advances, 2019, 37(3): 491-504. |
| 101 | ZHANG Teng, ZHU Mingjun. Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse[J]. Bioresource Technology, 2017, 229: 204-210. |
| 102 | EL-DALATONY Marwa M, KURADE Mayur B, ABOU-SHANAB Reda A I, et al. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae[J]. Bioresource Technology, 2016, 219: 98-105. |
| 103 | KIM Ho Myeong, Chi Hoon OH, Hyeun-Jong BAE. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production[J]. Bioresource Technology, 2017, 233: 44-50. |
| 104 | DEVARAPALLI Mamatha, ATIYEH Hasan K. A review of conversion processes for bioethanol production with a focus on syngas fermentation[J]. Biofuel Research Journal, 2015, 2(3): 268-280. |
| 105 | HARVEY L M, MCNEIL B, BERRY D R, et al. Autolysis in batch cultures of Penicillium chrysogenum at varying agitation rates[J]. Enzyme and Microbial Technology, 1998, 22(6): 446-458. |
| 106 | ALSAKER Keith V, PAREDES Carlos, PAPOUTSAKIS Eleftherios T. Metabolite stress and tolerance in the production of biofuels and chemicals: Gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum [J]. Biotechnology and Bioengineering, 2010, 105(6): 1131-1147. |
| 107 | LIU Dong, CHEN Yong, LI An, et al. Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption[J]. Bioresource Technology, 2013, 129: 321-328. |
| 108 | ZHANG Deli, WANG Fangjuan, YU Ying, et al. Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm[J]. Applied Microbiology and Biotechnology, 2021, 105: 3635-3648. |
| 109 | LIU Qingguo, ZHAO Nan, ZOU Yanan, et al. Feasibility of ethanol production from expired rice by surface immobilization technology in a new type of packed bed pilot reactor[J]. Renewable Energy, 2020, 149: 321-328. |
| 110 | 罗虎, 刘庆国, 陈勇, 等. 微生物集群效应的固定化酵母生产燃料乙醇[J]. 生物加工过程, 2018, 16(3): 35-40. |
| LUO Hu, LIU Qingguo, CHEN Yong, et al. Production of fuel ethanol by immobilized yeast based on microbial cluster effect[J]. Chinese Journal of Bioprocess Engineering, 2018, 16(3): 35-40. | |
| 111 | 汪虎, 刘庆国, 陈勇, 等. 基于细胞集群效应的高浓度燃料乙醇发酵研究[J]. 江西农业学报, 2021, 33(2): 88-93, 101. |
| WANG Hu, LIU Qingguo, CHEN Yong, et al. Study on high concentration fuel ethanol fermentation based on cell cluster effect[J]. Acta Agriculturae Jiangxi, 2021, 33(2): 88-93, 101. | |
| 112 | 黄俊, 梁士劼. 利用联合生物加工生产纤维素乙醇的研究进展[J]. 江苏农业科学, 2021, 49(2): 18-23. |
| HUANG Jun, LIANG Shijie. Research progress on production of cellulosic ethanol by combined bioprocessing[J]. Jiangsu Agricultural Sciences, 2021, 49(2): 18-23. | |
| 113 | ZHANG Yi-Heng Percival, LYND Lee R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems[J]. Biotechnology and Bioengineering, 2004, 88(7): 797-824. |
| 114 | GONG Yingxue, TANG Genyun, WANG Mingming, et al. Direct fermentation of amorphous cellulose to ethanol by engineered Saccharomyces cerevisiae coexpressing Trichoderma viride EG3 and BGL1[J]. The Journal of General and Applied Microbiology, 2014, 60(5): 198-206. |
| 115 | ZHANG Yuanyuan, WANG Caiyun, WANG Lulu, et al. Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(3): 453-464. |
| 116 | YANG Peizhou, ZHANG Haifeng, JIANG Shaotong. Construction of recombinant sestc Saccharomyces cerevisiae for consolidated bioprocessing, cellulase characterization, and ethanol production by in situ fermentation[J]. 3 Biotech, 2016, 6(2): 192. |
| 117 | INOKUMA Kentaro, HASUNUMA Tomohisa, KONDO Akihiko. Whole cell biocatalysts using enzymes displayed on yeast cell surface[J]. Emerging Areas in Bioengineering, 2018, 1: 81-92. |
| 118 | LIANG Youyun, SI Tong, Ee Lui ANG, et al. Engineered pentafunctional minicellulosome for simultaneous saccharification and ethanol fermentation in Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2014, 80(21): 6677-6684. |
| 119 | PHILLIPS Christopher M, BEESON William T, CATE Jamie H, et al. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa [J]. ACS Chemical Biology, 2011, 6(12): 1399-1406. |
| 120 | FAN Lihai, ZHANG Zijian, MEI Sen, et al. Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars[J]. Biotechnology for Biofuels, 2016, 9(1): 137. |
| 121 | FAN Lihai, ZHANG Zijian, YU Xiaoyu, et al. In vitro assembly of minicellulosomes with two scaffoldins on the yeast cell surface for cellulose saccharification and bioethanol production[J]. Process Biochemistry, 2013, 48(3): 430-437. |
| 122 | RAMAKRISHNA S V, PRAKASHA R S. Microbial fermentation with immobilized cells[J]. Current Science, 1999: 87-100. |
| 123 | RAMOS Márcio D N, SANDRI Juliana P, CLAES Arne, et al. Effective application of immobilized second generation industrial Saccharomyces cerevisiae strain on consolidated bioprocessing[J]. New Biotechnology, 2023, 78: 153-161. |
| 124 | PANDEY Ashok. Solid-state fermentation[J]. Biochemical Engineering Journal, 2003, 13(2/3): 81-84. |
| 125 | PANDEY Ashok, SOCCOL Carlos Ricardo, LARROCHE Christian, et al. Current developments in solid-state fermentation[M]. New York: Springer Science & Business Media, 2008. |
| 126 | PERIYASAMY Selvakumar, Beula ISABEL J, KAVITHA S, et al. Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol―A review[J]. Chemical Engineering Journal, 2023, 453: 139783. |
| 127 | ABDOLLAHIPOOR Bahareh, SHIRAZI Saeid Aghahossein, REARDON Kenneth F, et al. Near-azeotropic volatility behavior of hydrous and anhydrous ethanol gasoline mixtures and impact on droplet evaporation dynamics[J]. Fuel Processing Technology, 2018, 181: 166-174. |
| 128 | MIRANDA Nahieh T, FILHO Rubens Maciel, MACIEL Maria Regina Wolf. Comparison of complete extractive and azeotropic distillation processes for anhydrous ethanol production using aspen plus simulator[J]. Chemical Engineering Transactions, 2020, 80: 43-48. |
| 129 | CAO Zhongqi, XIA Chunjie, JIA Wei, et al. Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation-pervaporation coupling process[J]. Journal of Membrane Science, 2020, 595: 117485. |
| 130 | VANE Leland M. A review of pervaporation for product recovery from biomass fermentation processes[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(6): 603-629. |
| 131 | VANE Leland M. Separation technologies for the recovery and dehydration of alcohols from fermentation broths[J]. Biofuels, Bioproducts and Biorefining, 2008, 2(6): 553-588. |
| 132 | NGUYEN Viet D, AURESENIA Joseph, KOSUGE Hitoshi, et al. Vacuum fermentation integrated with separation process for ethanol production[J]. Biochemical Engineering Journal, 2011, 55(3): 208-214. |
| 133 | CAI Di, LI Ping, CHEN Changjing, et al. Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system[J]. Bioresource Technology, 2016, 220: 68-75. |
| 134 | LIU Gongping, GAN Lin, LIU Sainan, et al. PDMS/ceramic composite membrane for pervaporation separation of acetone-butanol-ethanol (ABE) aqueous solutions and its application in intensification of ABE fermentation process[J]. Chemical Engineering and Processing: Process Intensification, 2014, 86: 162-172. |
| 135 | 吴涵竹, 司志豪, 秦培勇. 生物乙醇原位分离技术的研究进展[J]. 化工进展, 2022, 41(3): 1318-1329. |
| WU Hanzhu, SI Zhihao, QIN Peiyong. Current progress of in situ bioethanol separation technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1318-1329. | |
| 136 | FAN Senqing, XIAO Zeyi, LI Minghai. Energy efficient of ethanol recovery in pervaporation membrane bioreactor with mechanical vapor compression eliminating the cold traps[J]. Bioresource Technology, 2016, 211: 24-30. |
| 137 | WANG Jie, LI Meisheng, ZHOU Shouyong, et al. Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation[J]. Separation and Purification Technology, 2017, 188: 24-37. |
| 138 | BOLTO Brian, HOANG Manh, XIE Zongli. A review of membrane selection for the dehydration of aqueous ethanol by pervaporation[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(3): 227-235. |
| 139 | LIU Chang, XUE Tanlong, YANG Yinhua, et al. Effect of crosslinker 3-methacryloxypropylmethyldimethoxysilane on UV-crosslinked PDMS-PTFPMS block copolymer membranes for ethanol pervaporation[J]. Chemical Engineering Research and Design, 2021, 168: 13-24. |
| 140 | GUAN Peiwen, REN Cong, SHAN Houchao, et al. Boosting the pervaporation performance of PDMS membrane for 1-butanol by MAF-6[J]. Colloid and Polymer Science, 2021, 299: 1459-1468. |
| 141 | DING Wenwu, WU Yuntao, TANG Xiaoyu, et al. Continuous ethanol fermentation in a closed-circulating system using an immobilized cell coupled with PDMS membrane pervaporation[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(1): 82-87. |
| 142 | LI Hongshen, LIU Hongrui, LI Yufang, et al. Combined vapor permeation and continuous solid-state distillation for energy-efficient bioethanol production[J]. Energies, 2021, 14(8): 2266. |
| 143 | SI Zhihao, CAI Di, LI Shufeng, et al. A high-efficiency diffusion process in carbonized ZIF-8 incorporated mixed matrix membrane for n-butanol recovery[J]. Separation and Purification Technology, 2019, 221: 286-293. |
| 144 | JIANG Haoji, HAN Lu, LIU Wenda, et al. Bioethanol production from cassava fed-batch fermentation in pervaporation membrane bioreactor with permeate fractional condensation[J]. Separation and Purification Technology, 2025, 354: 128807. |
| 145 | WANG Zhenyu, XU Weikai, GAO Yixuan, et al. Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 119. |
| 146 | WU Zhengzhe, LIN Xiran, TENG Jiye, et al. Recent advances of lignin functionalization for high-performance and advanced functional rubber composites[J]. Biomacromolecules, 2023, 24(11): 4553-4567. |
| 147 | 朱晨杰, 杜风光, 应汉杰, 等. 木质纤维素基平台化合物催化转化制备液体燃料及燃料添加剂[J]. 化工学报, 2015, 66(8): 2784-2794. |
| ZHU Chenjie, DU Fengguang, YING Hanjie, et al. Catalytic production of liquid hydrocarbon fuels and fuel additives from lignocellulosic platform molecules[J]. CIESC Journal, 2015, 66(8): 2784-2794. | |
| 148 | Jeong-Myeong HA, HWANG Kyung-Ran, KIM Young-Min, et al. Recent progress in the thermal and catalytic conversion of lignin[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 422-441. |
| 149 | RAGAUSKAS Arthur J, BECKHAM Gregg T, BIDDY Mary J, et al. Lignin valorization: Improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185): 1246843. |
| 150 | 朱文祥. 乙酸木质素磺化改性及改性产物的分散性研究[D]. 广州: 华南理工大学, 2021. |
| ZHU Wenxiang. Sulfonation of acetic acid lignin and dispersibility of modification products[D]. Guangzhou: South China University of Technology, 2021. | |
| 151 | LIU Qiang, KAWAI Tsubasa, INUKAI Yoshiaki, et al. A lignin-derived material improves plant nutrient bioavailability and growth through its metal chelating capacity[J]. Nature Communications, 2023, 14(1): 4866. |
| 152 | LIAO Yuhe, KOELEWIJN Steven-Friso, VAN DEN BOSSCHE Gil, et al. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020, 367(6484): 1385-1390. |
| 153 | 朱时祥, 徐新建, 李明, 等. 木质素/无机填料复合补强橡胶的研究进展[J]. 生物加工过程, 2020, 18(5): 612-618. |
| ZHU Shixiang, XU Xinjian, LI Ming, et al. Advance in reinforcing rubber with lignin/inorganic fillers[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(5): 612-618. | |
| 154 | CHUNG Hoyong, WASHBURN Newell R. Chemistry of lignin-based materials[J]. Green Materials, 2013, 1(3): 137-160. |
| 155 | QIU Jiabao, YUAN Shuai, XIAO Honggang, et al. Study on lignin amination for lignin/SiO2 nano-hybrids towards sustainable natural rubber composites[J]. International Journal of Biological Macromolecules, 2023, 233: 123547. |
| 156 | LI Ming, ZHU Liwei, XIAO Honggang, et al. Design of a lignin-based versatile bioreinforcement for high-performance natural rubber composites[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 8031-8042. |
| 157 | LINGER Jeffrey G, VARDON Derek R, GUARNIERI Michael T, et al. Lignin valorization through integrated biological funneling and chemical catalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 12013-12018. |
| 158 | CZERWIEC Quentin, CHABBERT Brigitte, David CRÔNIER, et al. Combined hemicellulolytic and phenoloxidase activities of Thermobacillus xylanilyticus enable growth on lignin-rich substrates and the release of phenolic molecules[J]. Bioresource Technology, 2024, 397: 130507. |
| 159 | XIN Xin, ZHANG Renkuan, LIU Shichang, et al. Engineering yeast to convert lignocellulose into vanillin[J]. Chemical Engineering Journal, 2024, 485: 149815. |
| 160 | GAO Jiayue, Mohamed Yassin ALI, KAMARAJ Yoganathan, et al. A comprehensive review on biological funnel mechanism in lignin valorization: Pathways and enzyme dynamics[J]. Microbiological Research, 2024, 287: 127835. |
| [1] | NI Xin, GAO Jiaoqi, ZHOU Yongjin. Progress on yeast cell factory for lignocellulose biotransformation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2475-2488. |
| [2] | SHU Gangwei, LIN Yucheng, ZHANG Weihong, ZHAO Shiqiang, ZHENG Xiaoyang, CHANG Chun. Research progress in biorefinery and high value application of xylose [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3798-3811. |
| [3] | BAI Yuli, BAI Fudong, ZHANG Lei, SUN Qimei, LI Xiuzheng. Preparation and process optimization of lignin-based phenolic resin [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1033-1038. |
| [4] | XU Kai, CUI Jinna, LIU Zhanying. Research progress in the production of cellulosic ethanol via consolidated bioprocessing [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6873-6882. |
| [5] | XU Lijie, LIU Haojie, XUE Rui, ZHOU Xiaoli, ZHOU Jie, QIAN Xiujuan, DONG Weiliang, JIANG Min. Interdisciplinary assistance for biological recycling of waste plastics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5029-5036. |
| [6] | CAI Di, LI Shufeng, SI Zhihao, QIN Peiyong, TAN Tianwei. Current advances and development of bio-butanol separation techniques [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1161-1177. |
| [7] | GAO Chuanrui, TIAN Chunyan, LI Zhihe, YI Weiming, YUAN Qiaoxia, FU Peng, ZHANG Yuchun, LI Zhiyu. Biorefining of biocrude oil: recirculation of by-products and hydrothermal autocatalysis [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5348-5359. |
| [8] | LIU Dongguo, WU Yunqing, DUAN Xuehui. Development and application of fungi in cellulosic ethanol prodution via consolidated bioprocessing [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3568-3576. |
| [9] | LIU Nan, QI Feng, LI Li, ZHAO Xuebing, LIU Dehua, HUANG Jianzhong. Auxiliary proteins for boosting enzymatic hydrolysis of cellulose and the action mechanisms [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 1118-1129. |
| [10] | SUN Mingrong, LIU Xiaoxin, XIE Wenhua, ZONG Baoning, GAO Liang. Present economical development and prospective of biorefineries [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3250-3256. |
| [11] | PAN Qi, CHEN Jienan, ZHANG Xinmin, ZHAN Peng, ZHANG Lin . Extraction and characterization of enzymatic hydrolysis lignin from cellulosic ethanol fermentation residue [J]. Chemical Industry and Engineering Progree, 2015, 34(1): 86-90,159. |
| [12] | ZHANG Xinrui1,LI Xuying2,MA Qiujuan2,ZHANG Xiuli2. Review on related policy and patent analysis for enterprises in ethanol fuel industry [J]. Chemical Industry and Engineering Progree, 2013, 32(12): 3032-3036. |
| [13] | LI Xuying1,ZHANG Xinrui2,MA Qiujuan1,ZHANG Xiuli1. Technology development and patent analysis in the field of ethanol fuel [J]. Chemical Industry and Engineering Progree, 2013, 32(10): 2529-2534. |
| [14] | TAN Tianwei,YU Jianliang,ZHANG Xu. Advance in biorefinery technology [J]. Chemical Industry and Engineering Progree, 2011, 30(1): 117-. |
| [15] | QIN Weizhong,ZHU Bing,LI Qiang,CHEN Bingzhen. Challenges of biorefinery and opportunities for process systems engineering [J]. Chemical Industry and Engineering Progree, 2010, 29(5): 922-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |