| 1 |
马文杰, 姚卫棠. 共价有机框架(COFs)在锂离子电池中的应用[J]. 化工进展, 2023, 42(10): 5339-5352.
|
|
MA Wenjie, YAO Weitang. Application of covalent organic frameworks(COFs) in lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352.
|
| 2 |
朱晟, 彭怡婷, 闵宇霖, 等. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852.
|
|
ZHU Sheng, PENG Yiting, MIN Yulin, et al. Research progress on materials and technologies for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4837-4852.
|
| 3 |
王策, 王国庆, 王二锐, 等. 锂离子电池正极材料合成及改性[J]. 化工进展, 2021, 40(9): 4998-5011.
|
|
WANG Ce, WANG Guoqing, WANG Errui, et al. Synthesis and modification of lithium-ion battery cathode materials[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4998-5011.
|
| 4 |
BAUER Werner, Dorit NÖTZEL, WENZEL Valentin, et al. Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries[J]. Journal of Power Sources, 2015(15), 288: 359-367.
|
| 5 |
PETTINGER Karl-Heinz, DONG Winny. When does the operation of a battery become environmentally positive?[J]. Journal of the Electrochemical Society, 2017, 164(1): A6274-A6277.
|
| 6 |
BAUNACH M, JAISER S, SCHMELZLE S, et al. Delamination behavior of lithium-ion battery anodes: Influence of drying temperature during electrode processing[J]. Drying Technology, 2016, 34(4): 462-473.
|
| 7 |
JEONG Dongho, LEE Jongsoo. Electrode design optimization of lithium secondary batteries to enhance adhesion and deformation capabilities[J]. Energy, 2014, 75: 525-533.
|
| 8 |
LIU Jin, LUDWIG Brandon, LIU Yangtao, et al. Lithium-ion batteries: Scalable dry printing manufacturing to enable long-life and high energy lithium-ion batteries[J]. Advanced Materials Technologies, 2017, 2(10): 1770049.
|
| 9 |
张冬冬, 洪东升, 李婷婷. 干法电极制备技术的研究现状[J]. 电池, 2022, 52(4): 471-474.
|
|
ZHANG Dongdong, HONG Dongsheng, LI Tingting. Research status quo of dry electrode preparation technique[J]. Battery Bimonthly, 2022, 52(4): 471-474.
|
| 10 |
宋俊, 楚晓婉, 张琦, 等. 锂离子电池硅基复合负极制备方法[J]. 化工进展, 2021, 40(7): 3664-3678.
|
|
SONG Jun, CHU Xiaowan, ZHANG Qi, et al. Preparation methods of the silicon-based composite anode of lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3664-3678.
|
| 11 |
LI Yongxing, WU Yujing, WANG Zhixuan, et al. Progress in solvent-free dry-film technology for batteries and supercapacitors[J]. Materials Today, 2022, 55: 92-109.
|
| 12 |
MITCHELL Porter, XI Xiaomei, ZHONG Linda, et al. Dry-particle based adhesive and dry film and methods of making same: US20200152987A1[P]. 2020-5-14.
|
| 13 |
LI Jianlin, FLEETWOOD James, BLAKE HAWLEY W, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956.
|
| 14 |
TAO Runming, STEINHOFF Bryan, SUN Xiaoguang, et al. High-throughput and high-performance lithium-ion batteries via dry processing[J]. Chemical Engineering Journal, 2023, 471: 144300.
|
| 15 |
YAO Weiliang, CHOUCHANE Mehdi, LI Weikang, et al. A 5V-class cobalt-free battery cathode with high loading enabled by dry coating[J]. Energy & Environmental Science, 2023, 16(4): 1620-1630.
|
| 16 |
郭德超, 郭义敏, 张啟文, 等. 锂离子电池用无溶剂干法电极的制备及其性能研究[J]. 储能科学与技术, 2021, 10(4): 1311-1316.
|
|
GUO Dechao, GUO Yimin, ZHANG Qiwen, et al. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316.
|
| 17 |
KIRSCH Dylan J, LACEY Steven D, KUANG Yudi, et al. Scalable dry processing of binder-free lithium-ion battery electrodes enabled by holey graphene[J]. ACS Applied Energy Materials, 2019, 2(5): 2990-2997.
|
| 18 |
KAMAYA Noriaki, HOMMA Kenji, YAMAKAWA Yuichiro, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686.
|
| 19 |
DU Zhijia, WOOD III D L, DANIEL C, et al. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries[J]. Journal of Applied Electrochemistry, 2017, 47(3): 405-415.
|
| 20 |
SOPER A K, PAGE K, LLOBET A. Empirical potential structure refinement of semi-crystalline polymer systems: Polytetrafluoroethylene and polychlorotrifluoroethylene[J]. Journal of Physics Condensed Matter, 2013, 25(45): 454219.
|
| 21 |
秦洁, 周涵瀛, 马建龙, 等. 接触角测试仪的校准方法与误差分析[J]. 上海计量测试, 2018, 45(4): 48-50.
|
|
QIN Jie, ZHOU Hanying, MA Jianlong, et al. Calibration method and erroranalysis for contact angle tester[J]. Shanghai Measurement and Testing, 2018, 45(4): 48-50.
|
| 22 |
刘国昌, 吕经烈, 陈颖, 等. 推压成型-拉伸法制备聚四氟乙烯中空纤维膜[J]. 化工进展, 2012, 31(S2): 187-192.
|
|
LIU Guochang, Jinglie LYU, CHEN Ying, et al. Preparation of polytetrafluoroethylene hollow fiber membrane on extrusion-stretching process[J]. Chemical Industry and Engineering Progress, 2012, 31(S2): 187-192.
|
| 23 |
ZHANG Xiaowei, SAHRAEI Elham, WANG Kai. Deformation and failure characteristics of four types of lithium-ion battery separators[J]. Journal of Power Sources, 2016, 327: 693-701.
|
| 24 |
YAN Shutian, DENG Jie, Chulheung BAE, et al. In-plane orthotropic property characterization of a polymeric battery separator[J]. Polymer Testing, 2018, 72: 46-54.
|
| 25 |
RAFFLER Marco, SINZ Wolfgang, ERKER Simon, et al. Influence of loading rate and out of plane direction dependence on deformation and electro-mechanical failure behavior of a lithium-ion pouch cell[J]. Journal of Energy Storage, 2022, 56: 105906.
|
| 26 |
KALNAUS Sergiy, WANG Yanli, TURNER John A. Mechanical behavior and failure mechanisms of Li-ion battery separators[J]. Journal of Power Sources, 2017, 348: 255-263.
|
| 27 |
MOGHIM Mohammad Hadi, NAHVIBAYANI Ashkan, EQRA Rahim. Mechanical properties of heat-treated polypropylene separators for lithium-ion batteries[J]. Polymer Engineering & Science, 2022, 62(9): 3049-3058.
|
| 28 |
WANG Yu, LI Q M, XING Yuyang. Porosity variation of lithium-ion battery separators under uniaxial tension[J]. International Journal of Mechanical Sciences, 2020, 174: 105496.
|
| 29 |
MOGHIM Mohammad Hadi, BAYANI Ashkan Nahvi, EQRA Rahim. Strain-rate-dependent mechanical properties of polypropylene separator for lithium-ion batteries[J]. Polymer International, 2020, 69(6): 545-551.
|
| 30 |
国家市场监督管理总局, 国家标准化管理委员会. 塑料制品 薄膜和薄片 热塑性塑料薄膜试验指南: [S]. 北京: 中国标准出版社, 2021.
|
|
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Plastics—Film and sheeting—Guidance on the testing of thermoplastic films: [S]. Beijing: Standards Press of China, 2021.
|
| 31 |
ASTM Committee D20 on Plastics. Standard test method for tensile properties of thin plastic sheeting: [S]. West Conshohocken: ASTM International, 2018.
|
| 32 |
江斌, 孔祥景, 施伟, 等. 锂离子电池隔膜的力学性能测量[J]. 实验力学, 2023, 38(6): 712-722.
|
|
JIANG Bin, KONG Xiangjing, SHI Wei, et al. Mechanical properties of separator for lithium ion batteries[J]. Journal of Experimental Mechanics, 2023, 38(6): 712-722.
|
| 33 |
邢军龙, 王启岁, 杨续来. 粒径对锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2性能的影响[J]. 电源技术, 2015, 39(9): 1852-1854.
|
|
XING Junlong, WANG Qisui, YANG Xulai. Effect of particle size on electrochemical performance of LiNi0.5Co0.2Mn0.3O2 as cathode material for lithium ion batteries[J]. Chinese Journal of Power Sources, 2015, 39(9): 1852-1854.
|
| 34 |
CHEN Jianchao, LIU Jianyong, QI Yue, et al. Unveiling the roles of binder in the mechanical integrity of electrodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(9): A1502-A1509.
|