[1] DING X L, LI Y T, FANG F, et al. Hydrogen-induced magnesium-zirconium interfaces coupling:enabling fast hydrogen sorption at lower temperature[J]. Journal of Materials Chemistry A, 2017, 5(10):5067-5076.
[2] LI Y T, DING X L, WU F L, et al. Enhancement of hydrogen storage in destabilized LiNH2 with KMgH3 by quick conveyance of N-containing species[J]. The Journal of Physical Chemistry C, 2016, 120(3):1415-1420.
[3] LI Y T, DING X L, ZHANG Q A. Self-printing on graphitic nanosheets with metal borohydride nanodots for hydrogen storage[J]. Scientific Reports, 2016, 6:31114.
[4] LI Y T, ZHANG L X, ZHANG Q A, et al. In situ embedding of Mg2NiH4 and YH3 nanoparticles into bimetallic hydride NaMgH3 to inhibit phase segregation for enhanced hydrogen storage[J]. The Journal of Physical Chemistry C, 2014, 118(41):23635-23644.
[5] LI Y T, FANG F, FU H L, et al. Carbon nanomaterial-assisted morphological tuning for thermodynamic and kinetic destabilization in sodium alanates[J]. Journal of Materials Chemistry A, 2013, 1(17):5238-5246.
[6] LI Y T, ZHOU G Y, FANG F, et al. De-/re-hydrogenation features of NaAlH4 confined exclusively in nanopores[J]. Acta Materialia, 2011, 59(4):1829-1838.
[7] 李俊岭, 李涛, 李伟伟, 等. TiO2基锂离子电池复合负极材料的研究进展[J]. 化工进展, 2017, 36(5):1755-1762. LI J L, LI T, LI W W, et al. Recent progress on TiO2-based composites for Li-ion battery anodes[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1755-1762.
[8] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011, 334(6058):928-935.
[9] 王仙宁, 凌锋, 潘薇, 等. 锂离子电池负极材料中国专利分析[J]. 化工进展, 2016, 35(1):336-339. WANG X N, LING F, PAN W, et al. Chinese patent analysis on anode materials for lithium-ion battery[J]. Chemical Industry and Engineering Progress, 2016, 35(1):336-339.
[10] BONACCORSO F, COLOMBO L, YU G H, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217):1246501.
[11] CHANG J B, HUANG X K, CHEN J H, et al. Three-dimensional carbon-coated Si/rGO nanostructures anchored by nickel foam with carbon nanotubes for Li-ion battery applications[J]. Nano Energy, 2015, 15:679-687.
[12] XIAO Q Z, FAN Y, WANG X, et al. A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity[J]. Energy & Environmental Science, 2014, 7:655-661.
[13] LIANG B, LIU Y P, XU Y H. Silicon-based materials as high capacity anodes for next generation lithium ion batteries[J]. Journal of Power Sources, 2014, 267:469-490.
[14] CHAN C K, PENG H, CUI Y, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3:31-35.
[15] WU H, CHAN G, CUI Y, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7:310-315.
[16] WU H, ZHENG G, CUI Y, et al. Engineering empty space between Si nanoparticles for lithium-ion battery anodes[J]. Nano Letters, 2012, 12(2):904-909.
[17] BAGGETTO L, DANILOV G, NOTTEN P H L. Honeycombstructured silicon:remarkable morphological changes induced by electrochemical (De)lithiation[J]. Advanced Materials, 2011, 23(13):1563-1566.
[18] WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5):414-429.
[19] JIN Y, LI S, LI J, et al. Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%[J]. Energy & Environmental Science, 2017, 10:580-592.
[20] CUI L F, YANG Y, CUI Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries[J]. Nano Letters, 2009, 9(9):3370-3374.
[21] NG S H, WANG J Z, WEXLER D, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2006, 45(41):6896-6899.
[22] WU H, YU G H, BAO Z N, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications, 2013, 4:1943.
[23] 万武波, 赵宗彬, 邱介山, 等. 柠檬酸钠绿色还原制备石墨烯[J]. 新型炭材料, 2011, 26(1):16-20. WAN W B, ZHAO Z B, QIU J S, et al. "Green" reduction of graphene oxide to graphene by sodium citrate[J]. New Carbon Materials, 2011, 26(1):16-20.
[24] WAN W B, ZHAO Z B, QIU J S, et al. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength[J]. Materials Research Bulletin, 2013, 48(11):4797-4803.
[25] GEIM A K. Graphene:status and prospects[J]. Science, 2009, 324(5934):1530-1534.
[26] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438:197-200.
[27] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6:183-191.
[28] MEYER J C, GEIM A K, NOVOSELOV K S, et al. The structure of suspended graphene sheets[J]. Nature, 2007, 446:60-63.
[29] LOZADA-HIDALGO M, ZHANG S, GEIM A K, et al. Giant photoeffect in proton transport through graphene membranes[J]. Nature Nanotechnology, 2018, 13:300-303.
[30] WANG Z L, XU D, ZHANG X B, et al. In situ fabrication of porous graphene electrodes for high-performance energy storage[J]. ACS Nano, 2013,7(3):300-303.
[31] ZHAO X, HAYNER C M, KUNG M C, et al. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries[J]. Advanced Energy Materials, 2011, 1(6):1079-1084.
[32] XIA F, KWON S, LEE W W, et al. Graphene as an interfacial layer for improving cycling performance of Si nanowires in lithium-ion batteries[J]. Nano Letters, 2015, 15(10):6658-6664.
[33] TANG H, ZHANG J, ZHANG Y J, et al. Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application[J]. Journal of Power Sources, 2015, 286:431-437.
[34] CHOCKLA A M, PANTHANI M G, HOLMBERG V C, et al. Electrochemical lithiation of graphene-supported silicon and germanium for rechargeable batteries[J]. The Journal of Physical Chemistry C, 2012, 116(22):11917-11923.
[35] YE Y S, XIE X L, RICK J, et al. Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles[J]. Journal of Power Sources, 2014, 247:991-998.
[36] HE D F, BAI F J, LI L X, et al. Fabrication of sandwich-structured Si nanoparticles-graphene nanocomposites for high-performance lithiumion batteries[J]. Electrochimica Acta, 2015, 169:409-415.
[37] YUN Q B, QIN X Y, LV W, et al. "Concrete" inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery[J]. Carbon, 2015, 93:59-67.
[38] LUO Z P, XIAO Q Z, LEI G T, et al. Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries[J]. Carbon, 2016, 98:373-380. |