Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (3): 1739-1748.DOI: 10.16085/j.issn.1000-6613.2024-0327
• Resources and environmental engineering • Previous Articles Next Articles
SUN Yajuan1(
), DUAN Siyu1, ZHANG Hong2, ZHOU Dongdong2, LU Guangjun1, MA Zhibin1(
)
Received:2024-02-27
Revised:2024-04-23
Online:2025-04-15
Published:2025-03-25
Contact:
MA Zhibin
孙雅娟1(
), 段思宇1, 张宏2, 周冬冬2, 路广军1, 马志斌1(
)
通讯作者:
马志斌
作者简介:孙雅娟(1998—),女,硕士研究生,研究方向为固废建材利用。E-mail:yanlavor@126.com。
基金资助:CLC Number:
SUN Yajuan, DUAN Siyu, ZHANG Hong, ZHOU Dongdong, LU Guangjun, MA Zhibin. Effects of chemical admixtures on properties and hydration behaviors of solid waste based cementitious materials[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1739-1748.
孙雅娟, 段思宇, 张宏, 周冬冬, 路广军, 马志斌. 化学外加剂对固废基胶凝材料性能及水化行为的影响[J]. 化工进展, 2025, 44(3): 1739-1748.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0327
| 原料 | SiO2/% | Al2O3/% | CaO/% | SO3/% | Fe2O3/% | Na2O/% | MgO/% | K2O/% | 烧失量/% |
|---|---|---|---|---|---|---|---|---|---|
| CGS | 46.78 | 25.25 | 14.66 | 0.35 | 8.12 | 0.61 | 0.61 | 1.38 | 5.40 |
| CFBFA | 32.28 | 23.55 | 21.47 | 11.90 | 6.65 | 0.35 | 0.53 | 0.86 | 6.89 |
| OPC | 20.70 | 7.72 | 55.30 | 2.37 | 3.45 | 0.33 | 2.74 | 0.64 | 2.69 |
| 原料 | SiO2/% | Al2O3/% | CaO/% | SO3/% | Fe2O3/% | Na2O/% | MgO/% | K2O/% | 烧失量/% |
|---|---|---|---|---|---|---|---|---|---|
| CGS | 46.78 | 25.25 | 14.66 | 0.35 | 8.12 | 0.61 | 0.61 | 1.38 | 5.40 |
| CFBFA | 32.28 | 23.55 | 21.47 | 11.90 | 6.65 | 0.35 | 0.53 | 0.86 | 6.89 |
| OPC | 20.70 | 7.72 | 55.30 | 2.37 | 3.45 | 0.33 | 2.74 | 0.64 | 2.69 |
| 样品简称 | CGS/% | CFBFA/% | OPC/% | 化学外加剂 | W/B | ||
|---|---|---|---|---|---|---|---|
| NaOH/% | Na2SO4/% | Na2CO3/% | |||||
| 对照组 | — | — | — | — | — | — | — |
| CSF-1NH | — | — | — | 1 | — | — | — |
| CSF-3NH | — | — | — | 3 | — | — | — |
| CSF-5NH | — | — | — | 5 | — | — | — |
| CSF-1NS | — | — | — | — | 1 | — | — |
| CSF-3NS | — | — | — | — | 3 | — | — |
| CSF-5NS | 40 | 20 | 40 | — | 5 | — | 0.5 |
| CSF-1NC | — | — | — | — | — | 1 | — |
| CSF-3NC | — | — | — | — | — | 3 | — |
| CSF-5NC | — | — | — | — | — | 5 | — |
| CSF-2NH2NS | — | — | — | 2 | 2 | — | — |
| CSF-3NH1NS | — | — | — | 3 | 1 | — | — |
| CSF-3NH3NS | — | — | — | 3 | 3 | — | — |
| 样品简称 | CGS/% | CFBFA/% | OPC/% | 化学外加剂 | W/B | ||
|---|---|---|---|---|---|---|---|
| NaOH/% | Na2SO4/% | Na2CO3/% | |||||
| 对照组 | — | — | — | — | — | — | — |
| CSF-1NH | — | — | — | 1 | — | — | — |
| CSF-3NH | — | — | — | 3 | — | — | — |
| CSF-5NH | — | — | — | 5 | — | — | — |
| CSF-1NS | — | — | — | — | 1 | — | — |
| CSF-3NS | — | — | — | — | 3 | — | — |
| CSF-5NS | 40 | 20 | 40 | — | 5 | — | 0.5 |
| CSF-1NC | — | — | — | — | — | 1 | — |
| CSF-3NC | — | — | — | — | — | 3 | — |
| CSF-5NC | — | — | — | — | — | 5 | — |
| CSF-2NH2NS | — | — | — | 2 | 2 | — | — |
| CSF-3NH1NS | — | — | — | 3 | 1 | — | — |
| CSF-3NH3NS | — | — | — | 3 | 3 | — | — |
| 养护龄期 | 温度范围 | 样品结合水失重率/% | ||||
|---|---|---|---|---|---|---|
| 对照组 | CSF-5NS | CSF-5NC | CSF-3NH | CSF-2NH2NS | ||
| 28d | 室温~414℃ | 8.16 | 10.41 | 9.66 | 9.74 | 10.87 |
| 414~470℃ | 1.56 | 0.82 | 0.92 | 0.86 | 0.75 | |
| 470~700℃ | 5.08 | 5.08 | 5.72 | 5.41 | 5.21 | |
| 室温~700℃ | 14.80 | 16.31 | 16.30 | 16.01 | 16.83 | |
| 90d | 室温~414℃ | 9.55 | 12.53 | 10.15 | 9.78 | 11.50 |
| 414~470℃ | 1.25 | 0.88 | 0.94 | 0.96 | 0.91 | |
| 470~700℃ | 4.11 | 4.66 | 4.69 | 4.69 | 4.75 | |
| 室温~700℃ | 14.91 | 18.07 | 15.78 | 15.43 | 17.16 | |
| 养护龄期 | 温度范围 | 样品结合水失重率/% | ||||
|---|---|---|---|---|---|---|
| 对照组 | CSF-5NS | CSF-5NC | CSF-3NH | CSF-2NH2NS | ||
| 28d | 室温~414℃ | 8.16 | 10.41 | 9.66 | 9.74 | 10.87 |
| 414~470℃ | 1.56 | 0.82 | 0.92 | 0.86 | 0.75 | |
| 470~700℃ | 5.08 | 5.08 | 5.72 | 5.41 | 5.21 | |
| 室温~700℃ | 14.80 | 16.31 | 16.30 | 16.01 | 16.83 | |
| 90d | 室温~414℃ | 9.55 | 12.53 | 10.15 | 9.78 | 11.50 |
| 414~470℃ | 1.25 | 0.88 | 0.94 | 0.96 | 0.91 | |
| 470~700℃ | 4.11 | 4.66 | 4.69 | 4.69 | 4.75 | |
| 室温~700℃ | 14.91 | 18.07 | 15.78 | 15.43 | 17.16 | |
| 1 | QU Jiangshan, ZHANG Jianbo, LI Huiquan, et al. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2023, 58: 11-19. |
| 2 | 芋艳梅, 刘永明. 固硫灰渣和粉煤灰的特性对比分析[J]. 水泥工程, 2021(4): 8-11. |
| YU Yanmei, LIU Yongming. Properties analysis of sulfur-fixing ash and fly ash[J]. Cement Engineering, 2021(4): 8-11. | |
| 3 | 宁美, 王智, 钱觉时, 等. 固硫灰渣的特性及其与现行标准的适应性[J]. 硅酸盐通报, 2019, 38(3): 688-693, 701. |
| NING Mei, WANG Zhi, QIAN Jueshi, et al. Characteristics of fluidized bed coal combustion fly ash and slag and its adaptability with current standards[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 688-693, 701. | |
| 4 | 朱菊芬, 李健, 闫龙, 等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术, 2021, 27(6): 11-21. |
| ZHU Jufen, LI Jian, YAN Long, et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology, 2021, 27(6): 11-21. | |
| 5 | 丁玉峰. 粉煤灰的形成过程及其火山灰活性来源分析[J]. 安徽建筑, 2023, 30(5): 103-104. |
| DING Yufeng. Formation process of fly ash and analysis of its pozzolanic activity source[J]. Anhui Architecture, 2023, 30(5): 103-104. | |
| 6 | MA Zhibin, SUN Yajuan, DUAN Siyu, et al. Properties and hydration mechanism of eco-friendly cementitious material prepared using coal gasification slag and circulating fluidized bed fly ash[J]. Construction and Building Materials, 2024, 420: 135581. |
| 7 | PROVIS John L, PALOMO Angel, SHI Caijun. Advances in understanding alkali-activated materials[J]. Cement and Concrete Research, 2015, 78: 110-125. |
| 8 | 蔺喜强, 王栋民, 许晨阳, 等. 硫酸盐类及氯盐类激发剂对粉煤灰活性的影响[J]. 粉煤灰, 2012, 24(1): 4-7. |
| LIN Xiqiang, WANG Dongmin, XU Chenyang, et al. The influence of sulfate/chlorine salt activators on activity of fly ash[J]. Coal Ash, 2012, 24(1): 4-7. | |
| 9 | VELANDIA Diego F, LYNSDALE Cyril J, PROVIS John L, et al. Evaluation of activated high volume fly ash systems using Na2SO4, lime and quicklime in mortars with high loss on ignition fly ashes[J]. Construction and Building Materials, 2016, 128: 248-255. |
| 10 | 杭美艳, 吕学涛, 郭艳梅, 等. 煤气化渣微粉活性激发效果的试验研究[J]. 硅酸盐通报, 2019, 38(3): 878-883, 888. |
| HANG Meiyan, Xuetao LYU, GUO Yanmei, et al. Experimental study on activation effect of micropowder of coal gasification slag[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 878-883, 888. | |
| 11 | 刘娟红, 许鹏玉, 周昱程, 等. 改性煤气化渣用于矿山充填的试验研究[J]. 硅酸盐通报, 2020, 39(8): 2528-2535. |
| LIU Juanhong, XU Pengyu, ZHOU Yucheng, et al. Experimental study on modified coal gasification slag used for mine filling[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2528-2535. | |
| 12 | 宋维龙, 朱志铎, 浦少云, 等. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077. |
| SONG Weilong, ZHU Zhiduo, PU Shaoyun, et al. Mechanical performance and micro-mechanism of alkali-activated binary/ternary composite industrial waste residues cementitious materials[J]. Materials Reports, 2020, 34(22): 22070-22077. | |
| 13 | 权娟娟, 张凯峰, 王可娜. 改性磷石膏对石膏矿渣水泥水化过程的影响研究[J]. 硅酸盐通报, 2017, 36(12): 4033-4037, 4043. |
| QUAN Juanjuan, ZHANG Kaifeng, WANG Kena. Effect of modified phosphogypsum on the hydration process of gypsum slag cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4033-4037, 4043. | |
| 14 | ETCHEVERRY Juan Manuel, VILLAGRAN-ZACCARDI Yury Andres, VAN DEN HEEDE Philip, et al. Effect of sodium sulfate activation on the early age behaviour and microstructure development of hybrid cementitious systems containing Portland cement, and blast furnace slag[J]. Cement and Concrete Composites, 2023, 141: 105101. |
| 15 | 黄科, 马玉玮, 郭奕群, 等. 碱激发粉煤灰/矿渣复合体系的性能研究[J]. 硅酸盐通报, 2015, 34(10): 2769-2774. |
| HUANG Ke, MA Yuwei, GUO Yiqun, et al. Properties of alkali-activated fly ash/slag composite system[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(10): 2769-2774. | |
| 16 | LEE N K, JANG J G, LEE H K. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages[J]. Cement and Concrete Composites, 2014, 53: 239-248. |
| 17 | AVET François, SCRIVENER Karen. Investigation of the calcined kaolinite content on the hydration of limestone calcined clay cement (LC3)[J]. Cement and Concrete Research, 2018, 107: 124-135. |
| 18 | 殷素红, 管海宇, 胡捷, 等. 碱激发粉煤灰-矿渣灌浆材料的流变性与流动性[J]. 华南理工大学学报(自然科学版), 2019, 47(8): 120-128, 135. |
| YIN Suhong, GUAN Haiyu, HU Jie, et al. Rheological properties and fluidity of alkali-activated fly ash-slag grouting material[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8): 120-128, 135. | |
| 19 | 阎培渝, 张增起. 复合胶凝材料的水化硬化机理[J]. 硅酸盐学报, 2017, 45(8): 1066-1072. |
| YAN Peiyu, ZHANG Zengqi. Review on hydration of composite cementitious materials[J]. Journal of the Chinese Ceramic Society, 2017, 45(8): 1066-1072. | |
| 20 | 刘卓, 赵志曼, 吴磊, 等. 磷石膏-脱硫石膏复合相石膏胶凝材料性能研究[J]. 非金属矿, 2020, 43(6): 46-48. |
| LIU Zhuo, ZHAO Zhiman, WU Lei, et al. Study on properties of phosphogypsum-desulfurization gypsum composite gypsum cementitious material[J]. Non-Metallic Mines, 2020, 43(6): 46-48. | |
| 21 | 彭饶, 陈伟, 李秋, 等. 硫酸钠激发尾矿充填材料的性能与微观结构[J]. 建筑材料学报, 2020, 23(3): 685-691. |
| PENG Rao, CHEN Wei, LI Qiu, et al. Properties and microstructure of cemented paste tailings activated by sodium sulfate[J]. Journal of Building Materials, 2020, 23(3): 685-691. | |
| 22 | TAN Hongbo, DENG Xiufeng, HE Xingyang, et al. Compressive strength and hydration process of wet-grinded granulated blast-furnace slag activated by sodium sulfate and sodium carbonate[J]. Cement and Concrete Composites, 2019, 97: 387-398. |
| 23 | BALLEKERE KUMARAPPA Darshan, PEETHAMPARAN Sulapha, NGAMI Margueritte. Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods[J]. Cement and Concrete Research, 2018, 109: 1-9. |
| 24 | KISHAR Essam A. Hydration reaction of tricalciumaluminate in different systems[J]. Cement and Concrete Research, 2005, 35(8): 1638-1640. |
| 25 | WU Linmei, FARZADNIA Nima, SHI Caijun, et al. Autogenous shrinkage of high performance concrete: A review[J]. Construction and Building Materials, 2017, 149: 62-75. |
| 26 | 席雅允, 沈玉, 刘娟红, 等. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(S2): 262-267, 274. |
| XI Yayun, SHEN Yu, LIU Juanhong, et al. Study on the mechanism of chemical excitation on compressive strength of coal gasification slag-cement system[J]. Materials Reports, 2021, 35(S2): 262-267, 274. | |
| 27 | 罗立群, 舒伟, 程琪林, 等. 铁尾矿加气混凝土制备工艺及结构形成机理分析[J]. 化工进展, 2017, 36(4): 1482-1490. |
| LUO Liqun, SHU Wei, CHENG Qilin, et al. Reaction mechanism on autoclaved aerated concrete made from low-grade vanadium titanium iron tailings[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1482-1490. | |
| 28 | BILLONG Ndigui, Jonathan OTI, KINUTHIA John. Using silica fume based activator in sustainable geopolymer binder for building application[J]. Construction and Building Materials, 2021, 275: 122177. |
| 29 | 刘守庆, 罗中秋, 和森, 等. 高炉矿渣-粉煤灰地聚合物胶凝材料固化砷钙渣[J]. 化工进展, 2017, 36(7): 2660-2666. |
| LIU Shouqing, LUO Zhongqiu, HE Sen, et al. Solidification/stabilization of calcium arsenate waste with blast furnace slag and fly ash geopolymer materials[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2660-2666. |
| [1] | WANG Qi, ZHANG Qian, YANG Kai, GAO Chenming, SUN Yuepeng, HUANG Wei. Separation of residual carbon and slag particles from coal gasification slag for rubber reinforcement fillers [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1749-1757. |
| [2] | LI Yanan, GUO Kai, WANG Jiaqi, WU Yaning. Comparison of phenol degradation by persulfate and peroxymonosulfate activated with coal gasification slag [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3503-3512. |
| [3] | GAO Zenglin, ZHANG Qian, GAO Chenming, YANG Kai, GAO Zhihua, HUANG Wei. Extraction and separation of carbon from coal water slurry gasification coarse slag by waterflow classifier [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1576-1583. |
| [4] | MA Jing, MA Yulong, ZHU Li, QIAO Song, SUN Yonggang, JI Wenxin. Structure composition of coal gasification slag and speciation of main metals in coal gasification slag [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5857-5866. |
| [5] | ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. |
| [6] | LYU Feiyong, CHU Mo, YI Haoran, HAO Yan, YANG Yanbo, SHI Xu, SUN Xingbo. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2372-2378. |
| [7] | LIN Qingyu, WANG Zhu, FENG Zhenfei, LING Biao, CHEN Zhen. Review progress on twisted tape structure for heat transfer and entropy generation in tube [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5709-5721. |
| [8] | LI Huize, DONG Lianping, BAO Weiren, WANG Jiancheng, FAN Panpan, FAN Minqiang. Carbon-ash separation of coal gasification slag in swirling water based on apparent density [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1344-1353. |
| [9] | WEI Zhiguo, LI Huafeng, KE Hanbing, ZHANG Kelong. Analysis on performance and mechanism of heat transfer enhancement of trifoil-hole baffle [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 465-472. |
| [10] | LI Weiyi, LIANG Na, MENG Jinying, JIA Xiangdong, LI Zhihui. Effect of ammonia concentration of base solution on different target parameters [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 957-964. |
| [11] | FAN Guorong, FAN Kuiyuan, LIU Pilong, JIANG Lexin. Numerical simulation of the comprehensive heat transfer performance in different types of structural longitudinal finned tube [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 935-940,951. |
| [12] | HE Changjiang,GUAN Changfeng,ZHANG Zhen,HE Lichen,YAN Hua,YANG Weimin. Experimental study on heat transfer enhancement of tubes inserted with rotors with holes [J]. Chemical Industry and Engineering Progree, 2014, 33(12): 3189-3193. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |