Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6627-6641.DOI: 10.16085/j.issn.1000-6613.2024-1643
• Resources and environmental engineering • Previous Articles
ZHANG Wenhui1,2,3(
), XING Xiaokai1,2,3(
), PANG Xinyu2, WU Meijing2, ZHANG Yu2, MU Chunyu2, XIE Yuxuan2, LIU Ran2
Received:2024-10-12
Revised:2025-01-18
Online:2025-12-08
Published:2025-11-25
Contact:
XING Xiaokai
张文辉1,2,3(
), 邢晓凯1,2,3(
), 庞新宇2, 巫美静2, 张宇2, 穆春宇2, 谢余萱2, 刘然2
通讯作者:
邢晓凯
作者简介:张文辉(1994—),男,硕士研究生,研究方向为油气管道输送工艺、多相流与地面集输。E-mail:zhangwh@cupk.edu.cn。
基金资助:CLC Number:
ZHANG Wenhui, XING Xiaokai, PANG Xinyu, WU Meijing, ZHANG Yu, MU Chunyu, XIE Yuxuan, LIU Ran. A review on depressurization behavior during the discharge of supercritical CO2 pipelines[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6627-6641.
张文辉, 邢晓凯, 庞新宇, 巫美静, 张宇, 穆春宇, 谢余萱, 刘然. 超临界CO2管道泄放过程管内减压行为研究进展[J]. 化工进展, 2025, 44(11): 6627-6641.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1643
| 规范名称 | 压力范围 | 温度范围 | 相态名称 | 管输工艺 |
|---|---|---|---|---|
| ISO 27913: 2016 Carbon dioxide capture, transportation and geological storage—Pipeline transportation systems | p>7.38MPa | T >31.1℃ | 超临界 | 密相输送 |
| — | -56℃<T<31.1℃ | 液相 | ||
| DNVGL-RP-F104—2021 Design and operation of carbon dioxide pipelines | p>7.38MPa | T >31.1℃ | 超临界 | 超临界输送 |
| — | -56℃<T<31.1℃ | 液相 | 液相输送 | |
| SH/T 3202—2018《二氧化碳输送管道工程设计标准》 | p>7.38MPa | T >31.1℃ | 超临界 | 超临界输送 |
| p>7.38MPa | -56℃<T<31.1℃ | 密相 | ||
| p<7.38MPa | -56℃<T<31.1℃ | 液相 | 液相输送 |
| 规范名称 | 压力范围 | 温度范围 | 相态名称 | 管输工艺 |
|---|---|---|---|---|
| ISO 27913: 2016 Carbon dioxide capture, transportation and geological storage—Pipeline transportation systems | p>7.38MPa | T >31.1℃ | 超临界 | 密相输送 |
| — | -56℃<T<31.1℃ | 液相 | ||
| DNVGL-RP-F104—2021 Design and operation of carbon dioxide pipelines | p>7.38MPa | T >31.1℃ | 超临界 | 超临界输送 |
| — | -56℃<T<31.1℃ | 液相 | 液相输送 | |
| SH/T 3202—2018《二氧化碳输送管道工程设计标准》 | p>7.38MPa | T >31.1℃ | 超临界 | 超临界输送 |
| p>7.38MPa | -56℃<T<31.1℃ | 密相 | ||
| p<7.38MPa | -56℃<T<31.1℃ | 液相 | 液相输送 |
| 文献来源 | 规格参数 | 压力传感器参数 | 温度传感器参数 | 初始压力/MPa | 初始温度/℃ | 介质类型(质量分数)/% | 相态类型 | 泄放方式及口径 | 主要研究内容 |
|---|---|---|---|---|---|---|---|---|---|
| Drescher等[ | ϕ12mm×1mm、长139m泄放管道 | 5kHz | 80Hz | 12 | 20 | CO2-N2(0~30) | 超临界相 | 阀门,9.5mm | 对比了均匀平衡(HEM)模型对泄放过程中温度、压力及干度预测的准确性,探讨了温度被低估的原因 |
| Cosham等[ | ϕ168.3mm×10.97mm、长144m泄放管道 | 快速响应 传感器 | 文献中未见相关描述 | 3.58~15.29 | 4.9~35.6 | CO2-N2、H2、O2、SO2、CH4(0~11.71) | 气相、液相和超临界相 | 爆破片,146.36mm | 探讨了等熵减压模型的可行性,比较了CO2或富含CO2的气体与天然气减压行为的异同 |
| Vree等[ | 长30m、高1.3m、内径5.08cm 螺旋管 | 50Hz | 1Hz | 12 | 20 | CO2 | 液相 | 阀门,3mm/6mm/12mm | 提出了减压路径可以近似根据等熵过程判断,实验结果表明从管道上侧放空会带来更低的温度 |
| Han等[ | 长51.96m、内径3.86mm泄放管道 | 文献中未见相关描述 | 文献中未见相关描述 | 8.5 | 20 | CO2-N2(2~8) | 液相 | 阀门,3.86mm | 采用量纲为1方法分析了压降过程 |
| Clausen等[ | 长50km、内径60.96cm,埋置 在地下0.9m处,两端各连接 2.5m长和内径20.32cm竖直放空管道 | 文献中未见相关描述 | 文献中未见相关描述 | 8.1 | 31 | CO2-N2、H2S、H2O、CH4(0.86) | 超临界相 | 阀门,203.2mm | 提供了一条实际超临界CO2管道放空的工程数据,验证了OLGA软件分析超临界CO2管道放空的可行性 |
| 顾帅威等[ | 规格ϕ21mm×3mm、长14.85m回路管道 | 高频压力 传感器 | 快速响应温度传感器 | 7.5~9 | 40 | CO2-N2(2~6) | 超临界相 | 阀门,1mm/2mm/2.76mm/3.57mm | 明确了泄放口径和泄放时间的关系;建立了不同泄放口径和初始压力下管内压力随泄漏时间变化的经验公式,明确了N2杂质对放空时间和管内最低温度的影响 |
| 李玉星等[ | 主管道长22m,内径187mm | 1kHz | 0.5s | 8.9/9 | 40 | CO2-CH4/N2(0~3) | 超临界相 | 爆破片,17mm | 明确了初始温度对超临界CO2管道泄放过程中温度、压力和相态的影响;CH4和N2杂质对超临界CO2放空过程中管内温度、压力及相态的影响 |
| 李康等[ | ϕ40mm×5mm、长23m循环回路管道 | 文献中未见相关描述 | 1Hz | 9 | 40 | CO2 | 超临界相 | 阀门,1mm/3mm/5mm | 提出了利用量纲为1传热参数确定泄放口内部壅塞流强度的方法;通过实验分析了不同相态泄放时管内温度、压力、流速等的变化规律;分析了泄放口径对泄放流动与传热过程的影响 |
| 刘锋[ | 25L储罐外接 长2m、内径4mm管道 | <0.2s | <1s | 6.17~8.81 | 16.0~41.6 | CO2 | 气相、液相和超临界相 | 阀门,0.54mm/0.89mm/1.20mm/1.38mm | 明确了液相或密相泄放时管内的相态变化;提出了判断管内出现相变的临界焓值理论;建立了等熵阻塞流泄漏速率模型;建立了可视化实验装置;揭示了泄放过程的流型变化 |
| 喻健良等[ | ϕ273mm×20mm、长258m的工业规模管道 | 100kHz | 100ms | 4~9 | 20~40 | CO2 | 气相、液相和超临界相 | 爆破片,15mm/50mm/100mm/233mm | 明确了不同初始状态下减压时的相变路径;分析了气泡成核对压力和温度的影响;建立了泄放速率零维预测模型;分析了传热对泄放过程的影响 |
| Botros等[ | ϕ63.5mm×6mm、长42m实验管道 | 文献中未见相关描述 | 文献中未见相关描述 | 12~38 | 6~15 | CO2-H2、N2、CO、O2、CH4(0.5~10) | 密相、 超临界相 | 爆破片,38.1mm | GERG—2008和(Peng-Robinson)(PR)方程均能很好地预测减压过程的平台压力;H2介质会影响所有状态方程对减压波速预测的准确性;分析了开始气化点对减压平台的影响 |
| Munkejord等[ | ϕ48.3mm×3.75mm、长61.67m实验管道 | 100kHz | 1Hz | 12~13 | 24~26 | CO2-N2/He(2) | 密相 | 爆破片,50mm | 证明了CO2减压过程存在非平衡气化和液化现象,明确了减压过程中两相流动规律及初始温度对减压波特性和非平衡效应的影响;考虑摩擦换热和两相流流型构建了减压模型;分析了HEM模型预测的准确性 |
| Holt等[ | 200m长的管道,管径1321mm | 文献中未见相关描述 | 文献中未见相关描述 | 98.4~105 | 2.9~13.7;-10~14 | CO2 | 液相、密相 | 爆破片,10~150mm | 建立了根据压差和温度估计泄放速度的模型,明确了两相流动沿着气液平衡线进行 |
| Martynov等[ | 长256m、内径233mm、壁厚29mm | 快速响应传感器 | 文献中未见相关描述 | 36~86 | 3~39 | CO2-空气(0/0.2) | 超临界相、饱和气液两相 | 爆破片,50mm | 建立了考虑泄放口壅塞流的三相流动预测模型;提出了HEM模型不适用于分层流;分析了干冰的形成对减压过程动力学参数的影响 |
| 文献来源 | 规格参数 | 压力传感器参数 | 温度传感器参数 | 初始压力/MPa | 初始温度/℃ | 介质类型(质量分数)/% | 相态类型 | 泄放方式及口径 | 主要研究内容 |
|---|---|---|---|---|---|---|---|---|---|
| Drescher等[ | ϕ12mm×1mm、长139m泄放管道 | 5kHz | 80Hz | 12 | 20 | CO2-N2(0~30) | 超临界相 | 阀门,9.5mm | 对比了均匀平衡(HEM)模型对泄放过程中温度、压力及干度预测的准确性,探讨了温度被低估的原因 |
| Cosham等[ | ϕ168.3mm×10.97mm、长144m泄放管道 | 快速响应 传感器 | 文献中未见相关描述 | 3.58~15.29 | 4.9~35.6 | CO2-N2、H2、O2、SO2、CH4(0~11.71) | 气相、液相和超临界相 | 爆破片,146.36mm | 探讨了等熵减压模型的可行性,比较了CO2或富含CO2的气体与天然气减压行为的异同 |
| Vree等[ | 长30m、高1.3m、内径5.08cm 螺旋管 | 50Hz | 1Hz | 12 | 20 | CO2 | 液相 | 阀门,3mm/6mm/12mm | 提出了减压路径可以近似根据等熵过程判断,实验结果表明从管道上侧放空会带来更低的温度 |
| Han等[ | 长51.96m、内径3.86mm泄放管道 | 文献中未见相关描述 | 文献中未见相关描述 | 8.5 | 20 | CO2-N2(2~8) | 液相 | 阀门,3.86mm | 采用量纲为1方法分析了压降过程 |
| Clausen等[ | 长50km、内径60.96cm,埋置 在地下0.9m处,两端各连接 2.5m长和内径20.32cm竖直放空管道 | 文献中未见相关描述 | 文献中未见相关描述 | 8.1 | 31 | CO2-N2、H2S、H2O、CH4(0.86) | 超临界相 | 阀门,203.2mm | 提供了一条实际超临界CO2管道放空的工程数据,验证了OLGA软件分析超临界CO2管道放空的可行性 |
| 顾帅威等[ | 规格ϕ21mm×3mm、长14.85m回路管道 | 高频压力 传感器 | 快速响应温度传感器 | 7.5~9 | 40 | CO2-N2(2~6) | 超临界相 | 阀门,1mm/2mm/2.76mm/3.57mm | 明确了泄放口径和泄放时间的关系;建立了不同泄放口径和初始压力下管内压力随泄漏时间变化的经验公式,明确了N2杂质对放空时间和管内最低温度的影响 |
| 李玉星等[ | 主管道长22m,内径187mm | 1kHz | 0.5s | 8.9/9 | 40 | CO2-CH4/N2(0~3) | 超临界相 | 爆破片,17mm | 明确了初始温度对超临界CO2管道泄放过程中温度、压力和相态的影响;CH4和N2杂质对超临界CO2放空过程中管内温度、压力及相态的影响 |
| 李康等[ | ϕ40mm×5mm、长23m循环回路管道 | 文献中未见相关描述 | 1Hz | 9 | 40 | CO2 | 超临界相 | 阀门,1mm/3mm/5mm | 提出了利用量纲为1传热参数确定泄放口内部壅塞流强度的方法;通过实验分析了不同相态泄放时管内温度、压力、流速等的变化规律;分析了泄放口径对泄放流动与传热过程的影响 |
| 刘锋[ | 25L储罐外接 长2m、内径4mm管道 | <0.2s | <1s | 6.17~8.81 | 16.0~41.6 | CO2 | 气相、液相和超临界相 | 阀门,0.54mm/0.89mm/1.20mm/1.38mm | 明确了液相或密相泄放时管内的相态变化;提出了判断管内出现相变的临界焓值理论;建立了等熵阻塞流泄漏速率模型;建立了可视化实验装置;揭示了泄放过程的流型变化 |
| 喻健良等[ | ϕ273mm×20mm、长258m的工业规模管道 | 100kHz | 100ms | 4~9 | 20~40 | CO2 | 气相、液相和超临界相 | 爆破片,15mm/50mm/100mm/233mm | 明确了不同初始状态下减压时的相变路径;分析了气泡成核对压力和温度的影响;建立了泄放速率零维预测模型;分析了传热对泄放过程的影响 |
| Botros等[ | ϕ63.5mm×6mm、长42m实验管道 | 文献中未见相关描述 | 文献中未见相关描述 | 12~38 | 6~15 | CO2-H2、N2、CO、O2、CH4(0.5~10) | 密相、 超临界相 | 爆破片,38.1mm | GERG—2008和(Peng-Robinson)(PR)方程均能很好地预测减压过程的平台压力;H2介质会影响所有状态方程对减压波速预测的准确性;分析了开始气化点对减压平台的影响 |
| Munkejord等[ | ϕ48.3mm×3.75mm、长61.67m实验管道 | 100kHz | 1Hz | 12~13 | 24~26 | CO2-N2/He(2) | 密相 | 爆破片,50mm | 证明了CO2减压过程存在非平衡气化和液化现象,明确了减压过程中两相流动规律及初始温度对减压波特性和非平衡效应的影响;考虑摩擦换热和两相流流型构建了减压模型;分析了HEM模型预测的准确性 |
| Holt等[ | 200m长的管道,管径1321mm | 文献中未见相关描述 | 文献中未见相关描述 | 98.4~105 | 2.9~13.7;-10~14 | CO2 | 液相、密相 | 爆破片,10~150mm | 建立了根据压差和温度估计泄放速度的模型,明确了两相流动沿着气液平衡线进行 |
| Martynov等[ | 长256m、内径233mm、壁厚29mm | 快速响应传感器 | 文献中未见相关描述 | 36~86 | 3~39 | CO2-空气(0/0.2) | 超临界相、饱和气液两相 | 爆破片,50mm | 建立了考虑泄放口壅塞流的三相流动预测模型;提出了HEM模型不适用于分层流;分析了干冰的形成对减压过程动力学参数的影响 |
| 参数 | 数值 |
|---|---|
| 干线管段1长度/km | 30 |
| 干线管段1内径/mm | 257 |
| 泄放点位置/km | 29.5 |
| 总传热系数/W·m-2·℃-1 | 2.5 |
| 放空阀1通径/mm | 134 |
| 干线截断阀1处温度/℃,压力/MPa | 40,10 |
| 干线截止阀2处压力/MPa | 9.5 |
| 参数 | 数值 |
|---|---|
| 干线管段1长度/km | 30 |
| 干线管段1内径/mm | 257 |
| 泄放点位置/km | 29.5 |
| 总传热系数/W·m-2·℃-1 | 2.5 |
| 放空阀1通径/mm | 134 |
| 干线截断阀1处温度/℃,压力/MPa | 40,10 |
| 干线截止阀2处压力/MPa | 9.5 |
| 模型名称 | 控制方程 | 典型研究 | 非平衡效应的表征 | 主要研究内容 |
|---|---|---|---|---|
| HEM | 混合相连续方程、混合相动量方程、混合相能量方程 | Lund等[ | 气液两相处于机械和热力平衡状态 | 讨论了不同平衡假设对声速的影响,对比了数值方法对模拟结果准确性的影响,分析了声速不连续对减压过程的影响 |
| Munkejord等[ | 明确了HEM模型计算单相和两相声速的准确度,明确了HEM模型对减压平台预测的准确度,明确了HEM模型对温度压力预测结果的准确度 | |||
| Log等[ | 结合HEM模型和实验数据分析了非平衡气化现象,利用气泡成核理论计算过了气化过热极限值,分析了初始温度对均相成核和非均相成核的影响 | |||
| HRM | 混合相连续方程、混合相动量方程、混合相能量方程 | Brown等[ | 机械平衡,热力不平衡,利用松弛因子和相间驱动力来修正相间传质速率,松弛因子为常数 | 探讨了松弛时间对减压过程中的压力、气相体积分数、密度及速度的影响规律;利用实验数据对比分析了HEM和HRM模型的准确性 |
| Log等[ | 机械平衡,热力不平衡,利用松弛因子和相间驱动力来修正相间传质速率,松弛因子与初始状态和流体三相点和临界点参数有关 | 改进了HRM模型,建立了不同初始工况下的松弛时间关系式,分析了不同初始温度对松弛时间的影响 | ||
| HFM | 混合相连续方程、混合相动量方程、混合相能量方程 | Log等[ | 机械平衡,热力不平衡,引入气泡数密度输运方程和界面密度输运方程,考虑气泡成核、聚并、破碎及生长过程建立相间质量通量 | 利用经典成核理论建立了均相成核模型,考虑均相成核和非均相成核建立了HFM模型,分析了温度对闪蒸过程的影响,分析了均相成核和非均相成核对模拟结果的影响 |
| DEM | 混合相连续方程、混合相动量方程、混合相能量方程 | De Lorenzo等[ | 机械平衡,热力不平衡,引入亚稳相,假设其与饱和相压力相同,但具有更高的温度,状态参数由气相、液相和亚稳相混合计算 | 分析了DEM、Moody、Henry-Fauske以及HEM模型对不同尺寸孔口及喷嘴的临界流动流量和临界压力的预测准确度 |
| TFM | 气液相连续方程、气液相动量方程、气液相能量方程 | Brown等[ | 气液两相处于机械和热力均不平衡的状态,在相间传质速率和相间作用力项中采用不同的方法考虑非平衡效应 | 分析了松弛因子、相间滑移系数及流体与管道间的传热对模拟结果准确性的影响 |
| Munkejord等[ | 对比了GERG—2008和PR两个状态方程对密度、声速以及相包络线等参数计算的准确性;对比了HEM和TFM模型计算结果,分析了不同传热模型对模拟准确度的影响 |
| 模型名称 | 控制方程 | 典型研究 | 非平衡效应的表征 | 主要研究内容 |
|---|---|---|---|---|
| HEM | 混合相连续方程、混合相动量方程、混合相能量方程 | Lund等[ | 气液两相处于机械和热力平衡状态 | 讨论了不同平衡假设对声速的影响,对比了数值方法对模拟结果准确性的影响,分析了声速不连续对减压过程的影响 |
| Munkejord等[ | 明确了HEM模型计算单相和两相声速的准确度,明确了HEM模型对减压平台预测的准确度,明确了HEM模型对温度压力预测结果的准确度 | |||
| Log等[ | 结合HEM模型和实验数据分析了非平衡气化现象,利用气泡成核理论计算过了气化过热极限值,分析了初始温度对均相成核和非均相成核的影响 | |||
| HRM | 混合相连续方程、混合相动量方程、混合相能量方程 | Brown等[ | 机械平衡,热力不平衡,利用松弛因子和相间驱动力来修正相间传质速率,松弛因子为常数 | 探讨了松弛时间对减压过程中的压力、气相体积分数、密度及速度的影响规律;利用实验数据对比分析了HEM和HRM模型的准确性 |
| Log等[ | 机械平衡,热力不平衡,利用松弛因子和相间驱动力来修正相间传质速率,松弛因子与初始状态和流体三相点和临界点参数有关 | 改进了HRM模型,建立了不同初始工况下的松弛时间关系式,分析了不同初始温度对松弛时间的影响 | ||
| HFM | 混合相连续方程、混合相动量方程、混合相能量方程 | Log等[ | 机械平衡,热力不平衡,引入气泡数密度输运方程和界面密度输运方程,考虑气泡成核、聚并、破碎及生长过程建立相间质量通量 | 利用经典成核理论建立了均相成核模型,考虑均相成核和非均相成核建立了HFM模型,分析了温度对闪蒸过程的影响,分析了均相成核和非均相成核对模拟结果的影响 |
| DEM | 混合相连续方程、混合相动量方程、混合相能量方程 | De Lorenzo等[ | 机械平衡,热力不平衡,引入亚稳相,假设其与饱和相压力相同,但具有更高的温度,状态参数由气相、液相和亚稳相混合计算 | 分析了DEM、Moody、Henry-Fauske以及HEM模型对不同尺寸孔口及喷嘴的临界流动流量和临界压力的预测准确度 |
| TFM | 气液相连续方程、气液相动量方程、气液相能量方程 | Brown等[ | 气液两相处于机械和热力均不平衡的状态,在相间传质速率和相间作用力项中采用不同的方法考虑非平衡效应 | 分析了松弛因子、相间滑移系数及流体与管道间的传热对模拟结果准确性的影响 |
| Munkejord等[ | 对比了GERG—2008和PR两个状态方程对密度、声速以及相包络线等参数计算的准确性;对比了HEM和TFM模型计算结果,分析了不同传热模型对模拟准确度的影响 |
| [1] | 张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 北京:中国21世纪议程管理中心,2023. |
| ZHANG Xian, YANG Xiaolu, LU Xi, et.al. Annual report on carbon dioxide capture, utilization and storage (CCUS) in China (2023)[R]. Beijing: China Agenda 21 Management Center, 2023 | |
| [2] | 郑建坡, 史建公, 刘志坚, 等. 二氧化碳管道输送技术研究进展[J]. 中外能源, 2018, 23(6): 87-94. |
| ZHENG Jianpo, SHI Jiangong, LIU Zhijian, et al. Recent advances in pipeline transportation technology of carbon dioxide[J]. Sino-Global Energy, 2018, 23(6): 87-94. | |
| [3] | 陈霖. 中石化二氧化碳管道输送技术及实践[J]. 石油工程建设, 2016, 42(4): 7-10. |
| CHEN Lin. Transmission technology of CO2 pipeline and practice in Sinopec[J]. Petroleum Engineering Construction, 2016, 42(4): 7-10. | |
| [4] | MUNKEJORD Svend Tollak, DENG Han, AUSTEGARD Anders, et al. Depressurization of CO2-N2 and CO2-He in a pipe: Experiments and modelling of pressure and temperature dynamics[J]. International Journal of Greenhouse Gas Control, 2021, 109: 103361. |
| [5] | GUO Xiaolu, YU Jianliang, YAN Xingqing, et al. Throttle and expansion characteristics of supercritical carbon dioxide during its venting[J]. International Journal of Greenhouse Gas Control, 2023, 122: 103800. |
| [6] | 朱炎. 基于气液两相流的输水管道稳态振动及瞬变过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
| ZHU Yan. Study on steady-state vibration and transient process of water pipeline based on gas-liquid two-phase flow[D]. Harbin: Harbin Institute of Technology, 2018. | |
| [7] | GUO Xiaolu, YAN Xingqing, YU Jianliang, et al. Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline[J]. Energy, 2017, 118: 1066-1078. |
| [8] | GUO Xiaolu, YAN Xingqing, YU Jianliang, et al. Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline[J]. Applied Energy, 2016, 178: 189-197. |
| [9] | Alexandra Metallinou LOG, HAMMER Morten, MUNKEJORD Svend Tollak. A flashing flow model for the rapid depressurization of CO2 in a pipe accounting for bubble nucleation and growth[J]. International Journal of Multiphase Flow, 2024, 171: 104666. |
| [10] | 黄哲, 杨雯, 梁铁波, 等. 基于非平衡相变的超临界二氧化碳离心压缩机气动性能分析[J]. 工程热物理学报, 2024, 45(9): 2631-2639. |
| HUANG Zhe, YANG Wen, LIANG Tiebo, et al. Aerodynamic performance analysis of supercritical carbon dioxide centrifugal compressor based on non-equilibrium phase transition[J]. Journal of Engineering Thermophysics, 2024, 45(9): 2631-2639. | |
| [11] | Alexandra Metallinou LOG, HAMMER Morten, DENG Han, et al. Depressurization of CO2 in a pipe: Effect of initial state on non-equilibrium two-phase flow[J]. International Journal of Multiphase Flow, 2024, 170: 104624. |
| [12] | Alexandra Metallinou LOG, MUNKEJORD Svend Tollak, HAMMER Morten, et al. Investigation of non-equilibrium effects during the depressurization of carbon dioxide[C]// 15th IIR-Gustav Lorentzen Conference on Natural Refrigerants. Trondheim, Norway: IIR, 2022. |
| [13] | 张海松. 超临界流体垂直管流动传热“类沸腾”机理研究[D]. 北京: 华北电力大学, 2021. |
| ZHANG Haisong. Study on “boiling-like” mechanismof heat transfer in vertical tube flow of supercritical fluid[D]. Beijing: North China Electric Power University, 2021. | |
| [14] | HANAOKA Yutaka, MAENO Kazuo, ZHAO Liang, et al. A study of liquid flashing phenomenon under rapid depressurization[J]. JSME International Journal Ser 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 1990, 33(2): 276-282. |
| [15] | 陈永平, 刘向东, 施明恒. 沸腾传热[M]. 北京: 化学工业出版社, 2023. |
| CHEN Yongping, LIU Xiangdong, SHI Mingheng. Boiling heat transfer[M]. Beijing: Chemical Industry Press, 2023. | |
| [16] | 胡其会, 滕霖, 王财林, 等. CO2管内节流实验装置设计及实验研究[J]. 实验技术与管理, 2018, 35(5): 84-88. |
| HU Qihui, TENG Lin, WANG Cailin, et al. Research on design and experiment of CO2 in pipe throttling experimental device[J]. Experimental Technology and Management, 2018, 35(5): 84-88. | |
| [17] | CAO Qi, YAN Xingqing, LIU Shaorong, et al. Temperature and phase evolution and density distribution in cross section and sound evolution during the release of dense CO2 from a large-scale pipeline[J]. International Journal of Greenhouse Gas Control, 2020, 96: 103011. |
| [18] | LI Chiyang, MARQUEZ Jazmine Aiya D, HU Pingfan, et al. CO2 pipelines release and dispersion: A review[J]. Journal of Loss Prevention in the Process Industries, 2023, 85: 105177. |
| [19] | 顾帅威, 李玉星, 滕霖, 等. 小尺度超临界CO2管道小孔泄漏减压及温降特性[J]. 化工进展, 2019, 38(2): 805-812. |
| GU Shuaiwei, LI Yuxing, TENG Lin, et al. Decompression and temperature drop characteristics of small-scale supercritical CO2 pipeline leakage with small holes[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 805-812. | |
| [20] | 顾帅威. 不同相态CO2管道减压过程流动与温降特性研究[D]. 青岛: 中国石油大学(华东), 2019. |
| GU Shuaiwei. Study on characteristics of flow and temperature drop in different phase CO2 pipeline during decompression[D]. Qingdao: China University of Petroleum (East China), 2019. | |
| [21] | 郭晓璐, 喻健良, 闫兴清, 等. 超临界CO2管道泄漏特性研究进展[J]. 化工学报, 2020, 71(12): 5430-5442. |
| GUO Xiaolu, YU Jianliang, YAN Xingqing, et al. Research progress on leakage characteristics of supercritical CO2 pipeline[J]. CIESC Journal, 2020, 71(12): 5430-5442. | |
| [22] | DRESCHER Michael, VARHOLM Kristoffer, MUNKEJORD Svend Tollak, et al. Experiments and modelling of two-phase transient flow during pipeline depressurization of CO2 with various N2 compositions[J]. Energy Procedia, 2014, 63: 2448-2457. |
| [23] | COSHAM ANDREW, JONES DAVID G, ARMSTRONG KEITH, et al. The decompression behaviour of carbon dioxide in the dense phase[C]//2012 9th International Pipeline Conference. Calgary, Alberta, Canada: ASME, 2013: 447-464. |
| [24] | VREE Barry, AHMAD Mohammad, BUIT Luuk, et al. Rapid depressurization of a CO2 pipeline—An experimental study[J]. International Journal of Greenhouse Gas Control, 2015, 41: 41-49. |
| [25] | HAN Sang Heon, CHANG Daejun, KIM Jooil, et al. Experimental investigation of the flow characteristics of jettisoning in a CO2 carrier[J]. Process Safety and Environmental Protection, 2014, 92(1): 60-69. |
| [26] | CLAUSEN Sigmund, OOSTERKAMP Antonie, STRØM Katrine Lie. Depressurization of a 50km long 24 inches CO2 pipeline[J]. Energy Procedia, 2012, 23: 256-265. |
| [27] | 杨腾, 李玉星, 王海锋, 等. 超临界CO2管道放空特性实验研究[J]. 中国安全生产科学技术, 2023, 19(S2): 101-107. |
| YANG Teng, LI Yuxing, WANG Haifeng, et al. Experimental study on venting characteristics of supercritical CO2 pipelines[J]. Journal of Safety Science and Technology, 2023, 19(S2): 101-107. | |
| [28] | 李康. 小尺度超临界二氧化碳泄漏过程物理机理研究[D]. 合肥: 中国科学技术大学, 2016. |
| LI Kang. Study on physical mechanism of small-scale supercritical carbon dioxide leakage process[D]. Hefei: University of Science and Technology of China, 2016. | |
| [29] | LI Kang, ZHOU Xuejin, TU Ran, et al. An experimental investigation of supercritical CO2 accidental release from a pressurized pipeline[J]. The Journal of Supercritical Fluids, 2016, 107: 298-306. |
| [30] | 刘锋. 超临界压力CO2管道泄漏特征与扩散规律研究[D]. 北京: 清华大学, 2016. |
| LIU Feng. Study on leakage characteristics and diffusion law of supercritical pressure CO2 pipeline[D]. Beijing: Tsinghua University, 2016. | |
| [31] | 喻健良, 郭晓璐, 闫兴清, 等. 工业规模CO2管道泄放过程中的压力响应及相态变化[J]. 化工学报, 2015, 66(11): 4327-4334. |
| YU Jianliang, GUO Xiaolu, YAN Xingqing, et al. Pressure response and phase transition in process of CO2 pipeline release in industrial scale[J]. CIESC Journal, 2015, 66(11): 4327-4334. | |
| [32] | 喻健良, 朱海龙, 郭晓璐, 等. 超临界CO2管道减压过程中的热力学特性[J]. 化工学报, 2017, 68(9): 3350-3357, 3645. |
| YU Jianliang, ZHU Hailong, GUO Xiaolu, et al. Thermodynamic properties during depressurization process of supercritical CO2 pipeline[J]. CIESC Journal, 2017, 68(9): 3350-3357, 3645. | |
| [33] | CAO Qi, YAN Xingqing, GUO Xiaolu, et al. Temperature evolution and heat transfer during the release of CO2 from a large-scale pipeline[J]. International Journal of Greenhouse Gas Control, 2018, 74: 40-48. |
| [34] | YU Shuai, YAN Xingqing, HE Yifan, et al. A new model to predict the small-hole decompression process of long CO2 pipeline[J]. Process Safety and Environmental Protection, 2024, 187: 443-458. |
| [35] | CHEN Lei, YAN Xingqing, HU Yanwei, et al. Depressurization and heat transfer during leakage of supercritical CO2 from a pipeline[J]. Greenhouse Gases: Science and Technology, 2022, 12(5): 616-628. |
| [36] | BOTROS Kamal K, GEERLIGS John, ROTHWELL Brian, et al. Effects of Argon as the primary impurity in anthropogenic carbon dioxide mixtures on the decompression wave speed[J]. The Canadian Journal of Chemical Engineering, 2017, 95(3): 440-448. |
| [37] | BOTROS K K, GEERLIGS J, ROTHWELL B, et al. Measurements of decompression wave speed in simulated anthropogenic carbon dioxide mixtures containing hydrogen[J]. Journal of Pressure Vessel Technology, 2017, 139(2): 021201. |
| [38] | BOTROS K K, IGI S, KONDO J. Measurements of decompression wave speed in natural gas containing 2%—8% (mole) hydrogen by a specialized shock tube[C]//2016 11th International Pipeline Conference. Calgary, Alberta, Canada: ASME, 2016. |
| [39] | MUNKEJORD Svend Tollak, HAMMER Morten. Depressurization of CO2-rich mixtures in pipes: Two-phase flow modelling and comparison with experiments[J]. International Journal of Greenhouse Gas Control, 2015, 37: 398-411. |
| [40] | MUNKEJORD Svend Tollak, AUSTEGARD Anders, DENG Han, et al. Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions[J]. Energy, 2020, 211: 118560. |
| [41] | HOLT H, BROWN J, WITLOX H W M, et al. Discharge and dispersion for CO2 releases from a long pipe: Experimental data and data review[J]. Institution of Chemical Engineers Symposium Series, 2015, 34: 1-12. |
| [42] | WITLOX Henk W M, BROWN Jock, HOLT Hamish, et al. Discharge of CO2 from large-diameter orifices: Experimental data and data review[J]. Process Safety Progress, 2015, 34(4): 389-397. |
| [43] | MARTYNOV Sergey, BROWN Solomon, MAHGEREFTEH Haroun, et al. Modelling three-phase releases of carbon dioxide from high-pressure pipelines[J]. Process Safety and Environmental Protection, 2014, 92(1): 36-46. |
| [44] | YANG Kai, CHEN Lei, HU Yanwei, et al. Thermophysical evolution during different decompression of N2-containing S-CO2 pipelines[J]. Greenhouse Gases: Science and Technology, 2024, 14(1): 182-196. |
| [45] | LUND Halvor, Tore FLÅTTEN, TOLLAK MUNKEJORD Svend. Depressurization of carbon dioxide in pipelines—Models and methods[J]. Energy Procedia, 2011, 4: 2984-2991. |
| [46] | MOODY F J. Maximum flow rate of a single component, two-phase mixture[J]. Journal of Heat Transfer, 1965, 87(1): 134-141. |
| [47] | DE LORENZO M, LAFON P, SEYNHAEVE J M, et al. Benchmark of delayed equilibrium model (DEM) and classic two-phase critical flow models against experimental data[J]. International Journal of Multiphase Flow, 2017, 92: 112-130. |
| [48] | HAMMER Morten, DENG Han, AUSTEGARD Anders, et al. Experiments and modelling of choked flow of CO2 in orifices and nozzles[J]. International Journal of Multiphase Flow, 2022, 156: 104201. |
| [49] | BROWN S, MARTYNOV S, MAHGEREFTEH H, et al. A homogeneous relaxation flow model for the full bore rupture of dense phase CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2013, 17: 349-356. |
| [50] | BROWN S, MARTYNOV S, MAHGEREFTEH H, et al. Modelling the non-equilibrium two-phase flow during depressurisation of CO2 pipelines[J]. International Journal of Greenhouse Gas Control, 2014, 30: 9-18. |
| [51] | 晏伟. 管输二氧化碳泄漏放空模拟[D]. 青岛: 中国石油大学(华东), 2013. |
| YAN Wei. Simulation of carbon dioxide leakage and venting in pipeline transportation[D]. Qingdao: China University of Petroleum (East China), 2013. | |
| [52] | XIAO Chenghuan, LU Zhaijun, YAN Liguo, et al. Effects of flow velocity on transient behaviour of liquid CO2 decompression during pipeline transportation[J]. Processes, 2021, 9(2): 192. |
| [53] | 陈宏举, 王靖怡, 康琦, 等. 多相管流模拟软件MPF与OLGA和LedaFlow预测能力对比[J]. 中国海上油气, 2022, 34(6): 168-176. |
| CHEN Hongju, WANG Jingyi, KANG Qi, et al. Prediction ability comparison of multiphase pipe flow simulation software MPF, OLGA and LedaFlow[J]. China Offshore Oil and Gas, 2022, 34(6): 168-176. | |
| [54] | DRESCHER Michael, FAHMI Adil, AURSAND Peder, et al. Towards a thorough validation of simulation tools for CO2 pipeline transport[J]. Energy Procedia, 2017, 114: 6730-6740. |
| [55] | 柳歆, 王海锋, 杨腾, 等. 高压CO2管道放空及安全泄放的数值模拟[J]. 油气储运, 2024, 43(4): 387-394. |
| LIU Xin, WANG Haifeng, YANG Teng, et al. Numerical simulation of high-pressure CO2 pipeline venting and safe release[J]. Oil & Gas Storage and Transportation, 2024, 43(4): 387-394. | |
| [56] | 张文辉, 安国钰, 熊小琴, 等. 超临界CO2管道阀室放空方案设计[J]. 油气储运, 2024, 43(7): 749-759. |
| ZHANG Wenhui, AN Guoyu, XIONG Xiaoqin, et al. Venting design for block valve station of supercritical CO2 pipeline[J]. Oil & Gas Storage and Transportation, 2024, 43(7): 749-759. | |
| [57] | 闫冰, 史博会, 陈俊文, 等. 地形起伏超临界CO2管道两端阀室放空动态模拟[J]. 油气储运, 2024, 43(5): 561-569. |
| YAN Bing, SHI Bohui, CHEN Junwen, et al. Dynamic venting simulation of valve chambers at both ends of supercritical CO2 pipelines with topographic relief[J]. Oil & Gas Storage and Transportation, 2024, 43(5): 561-569. | |
| [58] | GUNGOR K E, WINTERTON R H S. Simplified general correlation for saturated flow boiling and comparisons of correlations with data[J]. Chemical Engineering Research & Design, 1987, 65: 148-156. |
| [59] | MICHAL Guillaume, Erling ØSTBY, DAVIS Bradley J, et al. An empirical fracture control model for dense-phase CO2 carrying pipelines[C]//2020 13th International Pipeline Conference. Virtual, Online, 2021. |
| [60] | 胡其会, 杨腾, 苗青, 等. 含杂质超临界CO2管道放空对管内温压变化的影响实验[J]. 油气储运, 2024, 43(9): 985-994. |
| HU Qihui, YANG Teng, MIAO Qing, et al. Experimental study on the influence of venting on temperature and pressure changes in impurity-containing supercritical CO2 pipeline[J]. Oil & Gas Storage and Transportation, 2024, 43(9): 985-994. |
| [1] | WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28. |
| [2] | GONG Chengcheng, ZHANG Libiao, HAN Weida. Analysis and optimization of refrigerant maldistribution in heat exchange tubes of dry evaporators for ultra-low temperature screw chiller units [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 38-50. |
| [3] | ZHANG Hongwu, HU Qihui, ZHAO Xuefeng, LI Yuxing, MENG Lan, ZHANG Lijun, ZHU Jianlu, WANG Wuchang. Research progress on leakage risk of onshore CO2 pipeline [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 462-477. |
| [4] | GU Jiajin, CHEN Caixia, XIA Zihong. Direct numerical simulation of the rising motion of multiple bubbles in a gas-liquid bubbling tower [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 51-57. |
| [5] | CUI Ruizhuo, LI Shuangxi, LI Fangjun, ZHANG Tianhao, JIA Xiangji. Friction wear and temperature deformation field analysis of mechanical seal for dry friction kettle with SiC-graphite matching pair [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 58-73. |
| [6] | MA Runmei, HUANG Lele, LI Shuangxi, QI Zhicheng, YAN Xinxin, ZHAO Xinni. Analysis and experimental study on sealing performance of nozzle seal under high temperature and high pressure vibration conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 8-18. |
| [7] | XU Haitian, XU Yanying, ZHAI Ming. Boiling heat transfer simulation using lattice Boltzmann model with flow velocity boundary conditions [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 84-91. |
| [8] | DUAN Xianzhe, BI Wenting, LI Nan, DOU Jiale, SHAO Bingqing, WANG Jiawei, WU Peng, HUANG Huan, TANG Zhenping. Numerical simulation for disposal of high-level radioactive wastes (HLWs): Mechanisms and influencing factors of radionuclide migration [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5391-5405. |
| [9] | ZHANG Guanghui, JIANG Jinxu, HUANG Lei, CHEN Shixiang, MA Tiantian. Influencing factors analysis and prediction for oxygen-enriched combustion characteristics of municipal sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5460-5470. |
| [10] | ZHOU Jinghao, ZHANG Chaoyang, HU Haoxing, WANG Siming, LIU Jingyuan, WEI Guanghua. Numerical analysis of gas transfer in microporous layer of PEMFC based on lattice Boltzmann method [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4898-4907. |
| [11] | WANG Jilong, HE Lei, SU Yi, TANG Zhaofan. Numerical simulation on natural gas flameless combustion(MILD) in tail gas incinerator furnaces [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4928-4936. |
| [12] | ZHAI Yuhang, CONG Lixin, HAN Bing, WANG Qilin, ZOU Huichuan. Formation mechanism of large-scale hydrogen cloud deflagration pressure waves and determination of disaster effects [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4709-4719. |
| [13] | CHEN Sheng, LIU Zhongwei, LYU Rongrong, MIAO Chao, ZHOU Siya, JIANG Jingjing, CHEN Rui, HUANG Ganghua, HE Meng, ZHU Liyun. Simulation of multi-field interactive damage caused by acid gas condensation erosion in high-sulfur natural gas desulfurization purification units [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4754-4771. |
| [14] | LONG Huilong, TANG Haoran, MA Yuan, QIN Yunfeng, BAO Yihui, ZHANG Zengfu. Numerical calculation method of typical hydrate phase diagram [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4871-4878. |
| [15] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |