Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6627-6641.DOI: 10.16085/j.issn.1000-6613.2024-1643

• Resources and environmental engineering • Previous Articles    

A review on depressurization behavior during the discharge of supercritical CO2 pipelines

ZHANG Wenhui1,2,3(), XING Xiaokai1,2,3(), PANG Xinyu2, WU Meijing2, ZHANG Yu2, MU Chunyu2, XIE Yuxuan2, LIU Ran2   

  1. 1.College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
    2.School of Engineering, China University of Petroleum (Beijing) at Karamay, Karamay 834000, Xinjiang, China
    3.Xinjiang Key Laboratory of Multi-Medium Pipeline Safety Transportation, Urumqi 830000, Xinjiang, China
  • Received:2024-10-12 Revised:2025-01-18 Online:2025-12-08 Published:2025-11-25
  • Contact: XING Xiaokai

超临界CO2管道泄放过程管内减压行为研究进展

张文辉1,2,3(), 邢晓凯1,2,3(), 庞新宇2, 巫美静2, 张宇2, 穆春宇2, 谢余萱2, 刘然2   

  1. 1.中国石油大学(北京)机械与储运工程学院,北京 102249
    2.中国石油大学(北京)克拉玛依校区工学院,新疆 克拉玛依 834000
    3.新疆多介质管道安全输送重点实验室,新疆 乌鲁木齐 830000
  • 通讯作者: 邢晓凯
  • 作者简介:张文辉(1994—),男,硕士研究生,研究方向为油气管道输送工艺、多相流与地面集输。E-mail:zhangwh@cupk.edu.cn
  • 基金资助:
    新疆天山创新团队项目(2022TSYCTD0002);克拉玛依市创新环境建设(创新人才)项目(2024hjcxrc0057);新疆维吾尔自治区“一事一议”引进战略人才项目(XQZX20240054)

Abstract:

Upon the discharge of supercritical CO2 pipelines, the medium within the conduit is prone to flashing, thereby exhibiting two-phase flow behavior characterized by phase transition. This intricate process is influenced by a multitude of factors, including non-equilibrium phase change, flow boiling heat transfer, and critical flow dynamics. Under the combined effects of the Joule-Thomson phenomenon and latent heat of phase transformation, the internal environment of the pipeline during the discharge of supercritical CO2 may encounter low-temperature anomalies, which in turn could precipitate pipeline brittle fracture or the formation of ice blockages. This constitutes one of the pivotal issues constraining the secure discharge of CO2. This paper provided a comprehensive review of the advancements in understanding the pressure reduction process within pipelines during the discharge of supercritical CO2, drawing upon experimental research, numerical simulation, and theoretical analysis. It meticulously elucidated the patterns of variation in the phase state, temperature, and pressure of CO2 within the pipeline throughout this process. The study also critically examined the limitations inherent in current experimental and numerical approaches, identified the salient factors that impacted the formulation of mathematical models for the CO2 pressure reduction process, and underscored the significant influence of non-equilibrium phase change and flow boiling heat transfer on this process. Furthermore, the study anticipated several critical areas of future research, such as the imperative for high-frequency temperature sensor applications, a comparative analysis of the discharge characteristics of rupture disks versus valves, an investigation into the discharge disparities at various circumferential positions along the pipeline, an in-depth study of the non-homogeneous nucleation and flow boiling heat transfer mechanisms of CO2, an exploration of the propagation characteristics of pressure reduction waves, the development of two-dimensional flow and heat transfer models for the discharge of supercritical CO2 pipelines, and the pursuit of relevant engineering application research.

Key words: supercritical CO2 pipeline, depressurization, numerical simulation, non-equilibrium effect, flow boiling heat transfer

摘要:

超临界CO2管道泄放时管内介质会发生闪蒸,属于含相变的两相流动行为,这一复杂过程受非平衡相变、流动沸腾传热及临界流动等多因素的影响。在焦耳-汤姆逊效应和相变潜热的作用下,超临界CO2管道泄放过程中管内可能出现低温问题,会诱发管道脆断或形成冰堵,这是限制CO2安全泄放的关键问题之一。本文从实验研究、数值模拟和理论分析等角度综述了超临界CO2管道泄放时管内减压过程的研究进展,系统地梳理了该过程中管内CO2的相态、温度及压力的变化规律,分析了实验研究和数值模拟中存在的不足之处,归纳了影响建立CO2减压过程数学模型的关键因素,重点阐述了非平衡相变和流动沸腾传热对该过程的影响,展望了亟待开展的研究内容,包括高频温度传感器应用的必要性、爆破片和阀门泄放的差异性分析、管周向上不同位置泄放的差异性分析、CO2的非均相成核和流动沸腾传热机理研究、减压波传播特性、超临界CO2管道泄放二维流动与传热模型以及相关工程应用研究。

关键词: 超临界CO2管道, 减压, 数值模拟, 非平衡效应, 流动沸腾传热

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd