Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6413-6426.DOI: 10.16085/j.issn.1000-6613.2024-1517
• Materials science and technology • Previous Articles
WANG Hui1(
), LIU Shuping1,2,3(
), LIAO Xilin1,2,3, CHENG Xiaowen1, LIU Rangtong1,2,3(
)
Received:2024-09-18
Revised:2025-01-13
Online:2025-12-08
Published:2025-11-25
Contact:
LIU Shuping, LIU Rangtong
王慧1(
), 刘淑萍1,2,3(
), 廖喜林1,2,3, 程晓雯1, 刘让同1,2,3(
)
通讯作者:
刘淑萍,刘让同
作者简介:王慧(1998—),女,硕士研究生,研究方向为功能性服装面料。E-mail:13179581297@163.com。
基金资助:CLC Number:
WANG Hui, LIU Shuping, LIAO Xilin, CHENG Xiaowen, LIU Rangtong. Research progress of lignin applied to flame retardant plastics[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6413-6426.
王慧, 刘淑萍, 廖喜林, 程晓雯, 刘让同. 木质素在阻燃塑料应用中的研究进展[J]. 化工进展, 2025, 44(11): 6413-6426.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1517
| 样品① | Ad②/% | 残炭率/% | PHRR/kW·m-2 | THR/MJ·m-2 | 烟密度/% | 参考文献 |
|---|---|---|---|---|---|---|
| PE-0 | 0 | 18.00(600℃) | 263.00 | — | 86 | [ |
| PE-10 | 10.00 | — | 242.00 | — | 73 | [ |
| PE-15 | 15.00 | — | 232.00 | — | 61 | [ |
| PE-20 | 20.00 | — | 215.00 | — | 52 | [ |
| PE-25 | 25.00 | 31.00(600℃) | 226.00 | — | 58 | [ |
| ABS-0 | 0 | 1.90(650℃) | 775.00 | 71.20 | — | [ |
| ABS-5 | 5.00 | 4.90(650℃) | 640.00 | 69.10 | — | [ |
| ABS-10 | 10.00 | 7.00(650℃) | 550.00 | 65.40 | — | [ |
| ABS-20 | 20.00 | 14.50(650℃) | 526.00 | 65.10 | — | [ |
| 样品① | Ad②/% | 残炭率/% | PHRR/kW·m-2 | THR/MJ·m-2 | 烟密度/% | 参考文献 |
|---|---|---|---|---|---|---|
| PE-0 | 0 | 18.00(600℃) | 263.00 | — | 86 | [ |
| PE-10 | 10.00 | — | 242.00 | — | 73 | [ |
| PE-15 | 15.00 | — | 232.00 | — | 61 | [ |
| PE-20 | 20.00 | — | 215.00 | — | 52 | [ |
| PE-25 | 25.00 | 31.00(600℃) | 226.00 | — | 58 | [ |
| ABS-0 | 0 | 1.90(650℃) | 775.00 | 71.20 | — | [ |
| ABS-5 | 5.00 | 4.90(650℃) | 640.00 | 69.10 | — | [ |
| ABS-10 | 10.00 | 7.00(650℃) | 550.00 | 65.40 | — | [ |
| ABS-20 | 20.00 | 14.50(650℃) | 526.00 | 65.10 | — | [ |
| 样品 | Ad/% | LOI/% | UL-94 | 是否产生熔滴 | 残炭率/% | PHRR/kW·m-2 | THR/MJ·m-2 | TSR/m2·m-3 | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| PP | 0 | 18.00 | 无级别 | 有 | 0(800℃) | 588.00 | 105.00 | — | [ |
| PP/IFR | 30.00 | 31.00 | V-0级 | 没有 | 7.30(800℃) | 253.00 | 104.00 | — | [ |
| PF | 0 | 35.60 | V-0级 | 没有 | 43.80(800℃) | — | — | — | [ |
| PF/IFR | 50.00 | 46.40 | V-0级 | 没有 | 52.30(800℃) | — | — | — | [ |
| PUF | 0 | 19.10 | 无级别 | 有 | 21.10(700℃) | 215.90 | 11.40 | — | [ |
| PUF/IFR1 | 34.00 | 31.60 | V-0级 | 没有 | 39.70(700℃) | 74.40 | 5.50 | — | [ |
| PUF | 0 | 18.70 | 无级别 | 有 | 0(700℃) | — | — | 884.00 | [ |
| PUF/IFR2 | 30.00 | 26.30 | V-0级 | 没有 | 33.80(700℃) | — | — | 538.00 | [ |
| EP | 0 | 22.20 | 无级别 | 有 | 6.76(800℃) | 1501.70 | — | 121.00 | [ |
| EP/IFR | 20.00 | 27.50 | V-0级 | 没有 | 10.78(800℃) | 598.99 | — | 125.00 | [ |
| RPUF | 0 | 18.60 | 无级别 | 有 | — | 179.49 | 4.23 | 12.50 | [ |
| RPUF/IFR | 30.00 | 27.20 | V-0级 | 没有 | — | 87.00 | 2.20 | 11.70 | [ |
| 样品 | Ad/% | LOI/% | UL-94 | 是否产生熔滴 | 残炭率/% | PHRR/kW·m-2 | THR/MJ·m-2 | TSR/m2·m-3 | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| PP | 0 | 18.00 | 无级别 | 有 | 0(800℃) | 588.00 | 105.00 | — | [ |
| PP/IFR | 30.00 | 31.00 | V-0级 | 没有 | 7.30(800℃) | 253.00 | 104.00 | — | [ |
| PF | 0 | 35.60 | V-0级 | 没有 | 43.80(800℃) | — | — | — | [ |
| PF/IFR | 50.00 | 46.40 | V-0级 | 没有 | 52.30(800℃) | — | — | — | [ |
| PUF | 0 | 19.10 | 无级别 | 有 | 21.10(700℃) | 215.90 | 11.40 | — | [ |
| PUF/IFR1 | 34.00 | 31.60 | V-0级 | 没有 | 39.70(700℃) | 74.40 | 5.50 | — | [ |
| PUF | 0 | 18.70 | 无级别 | 有 | 0(700℃) | — | — | 884.00 | [ |
| PUF/IFR2 | 30.00 | 26.30 | V-0级 | 没有 | 33.80(700℃) | — | — | 538.00 | [ |
| EP | 0 | 22.20 | 无级别 | 有 | 6.76(800℃) | 1501.70 | — | 121.00 | [ |
| EP/IFR | 20.00 | 27.50 | V-0级 | 没有 | 10.78(800℃) | 598.99 | — | 125.00 | [ |
| RPUF | 0 | 18.60 | 无级别 | 有 | — | 179.49 | 4.23 | 12.50 | [ |
| RPUF/IFR | 30.00 | 27.20 | V-0级 | 没有 | — | 87.00 | 2.20 | 11.70 | [ |
| 木质素的化学改性方法 | 反应式 | 反应条件及目的 | 参考文献 |
|---|---|---|---|
| 胺化反应 | 利用木质素苯环上活泼的氢基与甲醛和胺缩合在木质素的苯环上引入含氮阻燃化合物,增强木质素在塑料中的阻燃效能 | [ | |
| 酯化反应 | 木质素在催化剂1-甲基咪唑的作用下,与丁酸酐发生化学反应。通过该反应,木质素的分子结构得到了优化,使其在高温环境下更加稳定,不易分解,提高热稳定性 | [ | |
| 羟甲基化反应 | 在80℃的条件下,木质素与甲醛在氢氧化钠溶液中发生反应。随后,通过添加盐酸调节pH至2,从而在木质素的苯环上引入羟甲基。这一过程增加了活性基团的数量,便于进一步引入磷、氮和金属离子等阻燃元素,从而提升材料的阻燃性能 | [ | |
| 席夫碱反应 | 主要是利用木质素分子结构中的羰基与三乙烯四胺(TETA)在水溶液中先发生亲核加成反应,后能脱水缩合以引入磷氮等其他阻燃元素,抑制火焰的传播,提高整体阻燃性能 | [ | |
| 硅烷化反应 | 将有机硅溶解于水和乙醇的混合溶剂中,使其与木质素进行反应,以引入硅元素,从而延缓燃烧速度并提升材料的阻燃耐久性 | [ |
| 木质素的化学改性方法 | 反应式 | 反应条件及目的 | 参考文献 |
|---|---|---|---|
| 胺化反应 | 利用木质素苯环上活泼的氢基与甲醛和胺缩合在木质素的苯环上引入含氮阻燃化合物,增强木质素在塑料中的阻燃效能 | [ | |
| 酯化反应 | 木质素在催化剂1-甲基咪唑的作用下,与丁酸酐发生化学反应。通过该反应,木质素的分子结构得到了优化,使其在高温环境下更加稳定,不易分解,提高热稳定性 | [ | |
| 羟甲基化反应 | 在80℃的条件下,木质素与甲醛在氢氧化钠溶液中发生反应。随后,通过添加盐酸调节pH至2,从而在木质素的苯环上引入羟甲基。这一过程增加了活性基团的数量,便于进一步引入磷、氮和金属离子等阻燃元素,从而提升材料的阻燃性能 | [ | |
| 席夫碱反应 | 主要是利用木质素分子结构中的羰基与三乙烯四胺(TETA)在水溶液中先发生亲核加成反应,后能脱水缩合以引入磷氮等其他阻燃元素,抑制火焰的传播,提高整体阻燃性能 | [ | |
| 硅烷化反应 | 将有机硅溶解于水和乙醇的混合溶剂中,使其与木质素进行反应,以引入硅元素,从而延缓燃烧速度并提升材料的阻燃耐久性 | [ |
| 样品 | Ad/% | LOI/% | UL-94 | 是否产生熔滴 | 残炭率(700℃)/% | PHRR/kW·m-2 | THR/MJ·m-2 | TSR/m2·m-3 | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| PP | 0 | 17.50 | — | — | 0 | 1350.00 | 87.30 | — | [ |
| PP/20PN-lignin | 20.00 | 22.50 | — | — | 12.00 | 380.00 | 74.20 | — | [ |
| PP/20PN-lignin-Ni | 20.00 | 26.00 | — | — | 24.00 | 330.00 | 69.50 | — | [ |
| PP/20PN-lignin-Co | 20.00 | 24.50 | — | — | 10.00 | 362.00 | 72.80 | — | [ |
| PP/20PN-lignin-Zn | 20.00 | 23.00 | — | — | 13.00 | 368.00 | 73.50 | — | [ |
| PBS | 0 | — | — | 有 | 9.30 | 500.00 | 18.80 | 274.00 | [ |
| PBS/2.5-O-lignin① | 2.50 | — | — | 没有 | 15.10 | 416.00 | 21.60 | 884.00 | [ |
| PBS/2.5-PNZn-lignin② | 2.50 | — | — | 没有 | 17.80 | 447.00 | 14.40 | 538.00 | [ |
| PBS/5-PNZn-lignin② | 5.00 | — | — | 没有 | 21.40 | 349.00 | 9.80 | 121.00 | [ |
| PBS/10-PNZn-lignin② | 10.00 | — | — | 没有 | 54.60 | 244.00 | 6.10 | 125.00 | [ |
| PP/WP | 0 | — | 无级别 | — | 8.40 | 595.00 | 93.90 | 12.50 | [ |
| PP/WP/5-O-lignin | 5.00 | — | 无级别 | — | 9.61 | 611.00 | 91.50 | 11.70 | [ |
| PP/WP/5-PNCu-lignin③ | 5.00 | — | 无级别 | — | 10.90 | 542.00 | 60.50 | 10.20 | [ |
| PP/WP/10-PNCu-lignin③ | 10.00 | — | V-2 | — | 10.30 | 575.00 | 72.30 | 9.63 | [ |
| PP/WP/15-PNCu-lignin③ | 15.00 | — | V-1 | — | 10.40 | 470.00 | 70.20 | 9.17 | [ |
| 样品 | Ad/% | LOI/% | UL-94 | 是否产生熔滴 | 残炭率(700℃)/% | PHRR/kW·m-2 | THR/MJ·m-2 | TSR/m2·m-3 | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| PP | 0 | 17.50 | — | — | 0 | 1350.00 | 87.30 | — | [ |
| PP/20PN-lignin | 20.00 | 22.50 | — | — | 12.00 | 380.00 | 74.20 | — | [ |
| PP/20PN-lignin-Ni | 20.00 | 26.00 | — | — | 24.00 | 330.00 | 69.50 | — | [ |
| PP/20PN-lignin-Co | 20.00 | 24.50 | — | — | 10.00 | 362.00 | 72.80 | — | [ |
| PP/20PN-lignin-Zn | 20.00 | 23.00 | — | — | 13.00 | 368.00 | 73.50 | — | [ |
| PBS | 0 | — | — | 有 | 9.30 | 500.00 | 18.80 | 274.00 | [ |
| PBS/2.5-O-lignin① | 2.50 | — | — | 没有 | 15.10 | 416.00 | 21.60 | 884.00 | [ |
| PBS/2.5-PNZn-lignin② | 2.50 | — | — | 没有 | 17.80 | 447.00 | 14.40 | 538.00 | [ |
| PBS/5-PNZn-lignin② | 5.00 | — | — | 没有 | 21.40 | 349.00 | 9.80 | 121.00 | [ |
| PBS/10-PNZn-lignin② | 10.00 | — | — | 没有 | 54.60 | 244.00 | 6.10 | 125.00 | [ |
| PP/WP | 0 | — | 无级别 | — | 8.40 | 595.00 | 93.90 | 12.50 | [ |
| PP/WP/5-O-lignin | 5.00 | — | 无级别 | — | 9.61 | 611.00 | 91.50 | 11.70 | [ |
| PP/WP/5-PNCu-lignin③ | 5.00 | — | 无级别 | — | 10.90 | 542.00 | 60.50 | 10.20 | [ |
| PP/WP/10-PNCu-lignin③ | 10.00 | — | V-2 | — | 10.30 | 575.00 | 72.30 | 9.63 | [ |
| PP/WP/15-PNCu-lignin③ | 15.00 | — | V-1 | — | 10.40 | 470.00 | 70.20 | 9.17 | [ |
| 木质素的阻燃应用 | 优点 | 缺点 | 参考文献 |
|---|---|---|---|
| 未改性木质素阻燃 | |||
| 单一木质素阻燃 | LOI 27%~28% | 添加量大,阻燃、炭化效率低,产烟量大,耐久性差 | [ |
| 木质素物理协同阻燃 | LOI>30%,符合UL-94测试V-0等级 | 添加量大,阻燃效率受材料、配比和用量影响,炭化效率低,产烟多,耐久性差 | [ |
| 改性木质素阻燃 | |||
| 磷或氮改性木质素阻燃 | 阻燃效率提升,添加量减少,热释放量降低 | 相容性、分散性、耐久性均不佳 | [ |
| 磷和氮改性木质素阻燃 | 磷氮协同阻燃,效果优于磷或氮改性木质素 | [ | |
| 含金属离子的磷氮改性木质素阻燃 | 炭化效率提高,抑烟 | [ | |
| 硅改性木质素阻燃 | 低毒环保,延缓火势,增强耐久性 | [ |
| 木质素的阻燃应用 | 优点 | 缺点 | 参考文献 |
|---|---|---|---|
| 未改性木质素阻燃 | |||
| 单一木质素阻燃 | LOI 27%~28% | 添加量大,阻燃、炭化效率低,产烟量大,耐久性差 | [ |
| 木质素物理协同阻燃 | LOI>30%,符合UL-94测试V-0等级 | 添加量大,阻燃效率受材料、配比和用量影响,炭化效率低,产烟多,耐久性差 | [ |
| 改性木质素阻燃 | |||
| 磷或氮改性木质素阻燃 | 阻燃效率提升,添加量减少,热释放量降低 | 相容性、分散性、耐久性均不佳 | [ |
| 磷和氮改性木质素阻燃 | 磷氮协同阻燃,效果优于磷或氮改性木质素 | [ | |
| 含金属离子的磷氮改性木质素阻燃 | 炭化效率提高,抑烟 | [ | |
| 硅改性木质素阻燃 | 低毒环保,延缓火势,增强耐久性 | [ |
| [1] | 张祖增. 循环经济法视角下“限塑新政”探讨[J]. 沈阳工业大学学报(社会科学版), 2021, 14(2): 180-187. |
| ZHANG Zuzeng. Discussion on “new deal of restricting plastic products” from perspective of circular economy law[J]. Journal of Shenyang University of Technology (Social Science Edition), 2021, 14(2): 180-187. | |
| [2] | 曾书航, 杜莹, 陈婷, 等. 液相沉淀法制备高纯超细阻燃型氢氧化镁[J]. 塑料科技, 2024, 52(2): 94-99. |
| ZENG Shuhang, DU Ying, CHEN Ting, et al. Preparation of high purity ultrafine flame retardant magnesium hydroxide by liquid precipitation method[J]. Plastics Science and Technology, 2024, 52(2): 94-99. | |
| [3] | 牛永锋. 生物基聚氨酯涂料的研究进展[J]. 上海涂料, 2021, 59(2): 36-41. |
| NIU Yongfeng. Research progress of bio-based polyurethane coatings[J]. Shanghai Coatings, 2021, 59(2): 36-41. | |
| [4] | 马晓振, 罗清, 秦冬冬, 等. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5): 617-626. |
| MA Xiaozhen, LUO Qing, QIN Dongdong, et al. Lignin-based polyurethane[J]. Progress in Chemistry, 2020, 32(5): 617-626. | |
| [5] | CHUNG Hoyong, WASHBURN Newell R. Improved lignin polyurethane properties with Lewis acid treatment[J]. ACS Applied Materials & Interfaces, 2012, 4(6): 2840-2846. |
| [6] | 岳小鹏, 管理想, 张思千, 等. 基于配位作用的木质素基阻燃/自修复聚氨酯弹性体的制备及性能研究[J]. 中国造纸, 2024, 43(7): 93-101. |
| YUE Xiaopeng, GUAN Lixiang, ZHANG Siqian, et al. Preparation and properties of self-healing lignin-based flame retardant polyurethane elastomers based on coordination reaction[J]. China Pulp & Paper, 2024, 43(7): 93-101. | |
| [7] | ZHOU Yuxin, LIU Minghua, Yuancai LYU, et al. Research on fire retardant lignin phenolic carbon foam with preferable smoke suppression performance[J]. Chemical Engineering Science, 2023, 282: 119305. |
| [8] | ZHOU Shuai, TAO Ran, DAI Peng, et al. Two-step fabrication of lignin-based flame retardant for enhancing the thermal and fire retardancy properties of epoxy resin composites[J]. Polymer Composites, 2020, 41(5): 2025-2035. |
| [9] | CHAUHAN Prakram Singh, AGRAWAL Ruchi, SATLEWAL Alok, et al. Next generation applications of lignin derived commodity products, their life cycle, techno-economics and societal analysis[J]. International Journal of Biological Macromolecules, 2022, 197: 179-200. |
| [10] | 蒋挺大. 木质素[M]. 2版. 北京: 化学工业出版社, 2009. |
| JIANG Tingda. Lignin[M]. 2nd ed. Beijing: Chemical Industry Press, 2009. | |
| [11] | RATH Subhashree, PRADHAN Deepak, DU Haishun, et al. Transforming lignin into value-added products: Perspectives on lignin chemistry, lignin-based biocomposites, and pathways for augmenting ligninolytic enzyme production[J]. Advanced Composites and Hybrid Materials, 2024, 7(1): 27. |
| [12] | 欧金芬, 陈振东, 张涵, 等. 木质素结构对其纳米化的影响及木质素纳米颗粒的功能性应用[J]. 中国造纸学报, 2024, 39(2): 61-72. |
| Jinfen OU, CHEN Zhendong, ZHANG Han, et al. Structural influence on lignin nanoparticle fabrication and its functional application[J]. Transactions of China Pulp and Paper, 2024, 39(2): 61-72. | |
| [13] | 李鑫, 穆瀚东, 毛壮壮, 等. 木质素基复合膜的研究进展[J]. 中国造纸学报, 2024, 39(2): 83-91. |
| LI Xin, MU Handong, MAO Zhuangzhuang, et al. Research progress of lignin-based composite film[J]. Transactions of China Pulp and Paper, 2024, 39(2): 83-91. | |
| [14] | GAO Cong, ZHOU Long, YAO Shuangquan, et al. Phosphorylated kraft lignin with improved thermal stability[J]. International Journal of Biological Macromolecules, 2020, 162: 1642-1652. |
| [15] | LU Weimiao, YE Jiewang, ZHU Lianghai, et al. Intumescent flame retardant mechanism of lignosulfonate as a char forming agent in rigid polyurethane foam[J]. Polymers, 2021, 13(10): 1585. |
| [16] | LI Xu, LIU Chang, AN Xinyu, et al. Bio-based alkali lignin cooperative systems for improving the flame retardant and mechanical properties of rigid polyurethane foam[J]. Polymers, 2023, 15(24): 4709. |
| [17] | SANG Yushuai, CHEN Hong, KHALIFEH Mohamad, et al. Catalysis and chemistry of lignin depolymerization in alcohol solvents—A review[J]. Catalysis Today, 2023, 408: 168-181. |
| [18] | 李鹏辉, 任建鹏, 吴文娟. 木质素在低共熔溶剂中降解的研究进展[J]. 中国造纸, 2022, 41(1): 78-85. |
| LI Penghui, REN Jianpeng, WU Wenjuan. Research progress of lignin degradation in deep eutectic solvents[J]. China Pulp & Paper, 2022, 41(1): 78-85. | |
| [19] | 马明国, 袁琪. 基于木质素的多功能材料应用研究进展[J]. 广东工业大学学报, 2022, 39(1): 14-20. |
| MA Mingguo, YUAN Qi. Research progress of multifunctional lignin-based materials[J]. Journal of Guangdong University of Technology, 2022, 39(1): 14-20. | |
| [20] | 霍翔宇, 丁春瑞, 王宇晨, 等. 木质素及其衍生物用于阻燃改性聚合物的研究进展[J]. 山东化工, 2022, 51(20): 72-74. |
| HUO Xiangyu, DING Chunrui, WANG Yuchen, et al. Research progress of lignin and its derivatives used in flame-retardant modified polymers[J]. Shandong Chemical Industry, 2022, 51(20): 72-74. | |
| [21] | LI Jian, BAI Xiaowei, FANG Yang, et al. Comprehensive mechanism of initial stage for lignin pyrolysis[J]. Combustion and Flame, 2020, 215: 1-9. |
| [22] | QIU Yi, ZHONG Dian, ZENG Kuo, et al. Evolution of lignin pyrolysis heavy components through the study of representative lignin monomers[J]. Fuel Processing Technology, 2023, 250: 107910. |
| [23] | YANG Hongyu, QIN Yu, LIANG Dingxiang, et al. Preparation of a novel flame retardant based on phosphorus/nitrogen modified lignin with metal-organic framework and its application in epoxy resin[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(22): 12845-12857. |
| [24] | 车德勇, 孙亚萍, 孙艳雪. 木质素热解的热重红外分析仪实验研究[J]. 科学技术与工程, 2016, 16(3): 225-228. |
| CHE Deyong, SUN Yaping, SUN Yanxue. TG-FTIR experimental study on lignin pyrolysis[J]. Science Technology and Engineering, 2016, 16(3): 225-228. | |
| [25] | 徐芳, 张锐, 崔达, 等. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[J]. 化工学报, 2025, 76(3): 1253-1263. |
| XU Fang, ZHANG Rui, CUI Da, et al. Study of pyrolysis reaction mechanism of lignin revealed by ReaxFF-MD simulation[J]. CIESC Journal, 2025, 76(3): 1253-1263.. | |
| [26] | 张雷, 王海英, 韩洪晶, 等. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5): 2429-2440. |
| ZHANG Lei, WANG Haiying, HAN Hongjing, et al. Development of catalysts for catalytic pyrolysis of lignin[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2429-2440. | |
| [27] | YANG Haitang, SHI Bingbing, XUE Yijiao, et al. Molecularly engineered lignin-derived additives enable fire-retardant, UV-shielding, and mechanically strong polylactide biocomposites[J]. Biomacromolecules, 2021, 22(4): 1432-1444. |
| [28] | ZHANG Anlin, ZHANG Jianzhong, LIU Lina, et al. Engineering phosphorus-containing lignin for epoxy biocomposites with enhanced thermal stability, fire retardancy and mechanical properties[J]. Journal of Materials Science & Technology, 2023, 167: 82-93. |
| [29] | LAI Mengyao, WANG Yachao, LI Fan, et al. Synthesis and characterization of sodium lignosulfonate-based phosphorus-containing intermediates and its composite Si-P-C silicone-acrylic emulsion coating for flame-retardant plywood[J]. Langmuir, 2024, 40(24): 12573-12593. |
| [30] | YU Jie, GUO Chuanchuan, WANG Jiankang, et al. Preparation of bio-based trinity lignin intumescent flame retardant and its effect on burning behavior and heat transfer process of epoxy resin composites[J]. Progress in Organic Coatings, 2024, 195: 108653. |
| [31] | LU Weimiao, LI Qian, ZHANG Yan, et al. Lignosulfonate/APP IFR and its flame retardancy in lignosulfonate-based rigid polyurethane foams[J]. Journal of Wood Science, 2018, 64(3): 287-293. |
| [32] | WIDSTEN Petri, TAMMINEN Tarja, PAAJANEN Antti, et al. Modified and unmodified technical lignins as flame retardants for polypropylene[J]. Holzforschung, 2021, 75(6): 584-590. |
| [33] | ZHAO Xiaojie, LIU Yuhan, SUN Benhui, et al. Lignin-derived flame retardant for improving fire safety and mechanical properties of polypropylene[J]. Journal of Applied Polymer Science, 2023, 140(48): e54739. |
| [34] | 宋艳, 杨晓涵, 林肯, 等. 含P/N/Si木质素基阻燃剂的制备及其阻燃聚乳酸[J]. 高分子材料科学与工程, 2024, 40(3): 12-22. |
| SONG Yan, YANG Xiaohan, LIN Ken, et al. Lignin-based flame retardants containing phosphorus, nitrogen and silicon elements for flame retardant polylactic acid[J]. Polymer Materials Science & Engineering, 2024, 40(3): 12-22. | |
| [35] | 高帅, 赵力漩, 赵佳慧, 等. 木质素基聚氨酯的发展现状[J]. 塑料, 2024, 53(2): 101-107. |
| GAO Shuai, ZHAO Lixuan, ZHAO Jiahui, et al. Development stutas of lignin-based polyurethane[J]. Plastics, 2024, 53(2): 101-107. | |
| [36] | GOLISZEK Marta, Beata PODKOŚCIELNA, SEVASTYANOVA Olena, et al. The influence of lignin diversity on the structural and thermal properties of polymeric microspheres derived from lignin, styrene, and/or divinylbenzene[J]. Materials, 2019, 12(18): 2847. |
| [37] | XIONG Shaojun, PANG Bo, ZHOU Sijie, et al. Economically competitive biodegradable PBAT/lignin composites: Effect of lignin methylation and compatibilizer[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 5338-5346. |
| [38] | AHMAD SAFFIAN Harmaen, KIM Hyun-Joong, TAHIR Paridah Md, et al. Effect of lignin modification on properties of kenaf core fiber reinforced poly(butylene succinate) biocomposites[J]. Materials, 2019, 12(24): 4043. |
| [39] | 张娜, 胡立红, 郭亚军, 等. 无机复合阻燃剂提高木质素基酚醛泡沫阻燃性的研究[J]. 热固性树脂, 2018, 33(6): 31-35. |
| ZHANG Na, HU Lihong, GUO Yajun, et al. Study on improving the flame retardancy of lignin-based phenolic foam by inorganic composite flame retardant[J]. Thermosetting Resin, 2018, 33(6): 31-35. | |
| [40] | 蒋晨廷. 聚乙烯/木质素复合材料的制备及其在建筑材料领域的应用[J]. 塑料科技, 2021, 49(1): 80-84. |
| JIANG Chenting. Preparation of polyethylene/lignin composites and its application in the field of building materials[J]. Plastics Science and Technology, 2021, 49(1): 80-84. | |
| [41] | SONG Pingan, CAO Zhenhu, FU Shenyuan, et al. Thermal degradation and flame retardancy properties of ABS/lignin: Effects of lignin content and reactive compatibilization[J]. Thermochimica Acta, 2011, 518(1/2): 59-65. |
| [42] | CANETTI Maurizio, BERTINI Fabio, DE CHIRICO Aurelio, et al. Thermal degradation behaviour of isotactic polypropylene blended with lignin[J]. Polymer Degradation and Stability, 2006, 91(3): 494-498. |
| [43] | ZHANG Dongqiao, ZENG Jia, LIU Weifeng, et al. Pristine lignin as a flame retardant in flexible PU foam[J]. Green Chemistry, 2021, 23(16): 5972-5980. |
| [44] | ZHI Maoyong, YANG Xiong, FAN Rong, et al. A comprehensive review of reactive flame-retardant epoxy resin: Fundamentals, recent developments, and perspectives[J]. Polymer Degradation and Stability, 2022, 201: 109976. |
| [45] | 宗旭, 宋艳, 白毓黎, 等. 含羟甲基化木质素膨胀阻燃聚丙烯复合材料的制备及阻燃性能[J]. 高分子材料科学与工程, 2020, 36(11): 56-63. |
| ZONG Xu, SONG Yan, BAI Yuli, et al. Preparation and flame retardant property of intumescent flame retardant polypropylene composite containing hydroxymethylated lignin[J]. Polymer Materials Science & Engineering, 2020, 36(11): 56-63. | |
| [46] | 李旭, 马悦, 安昕煜, 等. 协效阻燃木质素磺酸钠基聚氨酯泡沫材料的制备及性能[J]. 功能材料, 2023, 54(4): 4126-4131. |
| LI Xu, MA Yue, AN Xinyu, et al. Preparation and property of sodium lignosulfonate-based polyurethane foam with synergistic flame retardant[J]. Journal of Functional Materials, 2023, 54(4): 4126-4131. | |
| [47] | 王佳楠, 边勇军, 羿颖, 等. 碱木质素/聚磷酸铵膨胀阻燃聚氨酯泡沫的制备及性能研究[J]. 塑料科技, 2019, 47(7): 42-45. |
| WANG Jianan, BIAN Yongjun, YI Ying, et al. Study on preparation and properties of PUF intumescent flame retarded by alkali lignin/APP[J]. Plastics Science and Technology, 2019, 47(7): 42-45. | |
| [48] | 尚欣宇, 毕晓柯, 谭海彦, 等. 木质素和焦磷酸哌嗪复合膨胀型阻燃剂对环氧树脂材料阻燃性能的影响[J]. 东北林业大学学报, 2023, 51(6): 140-145. |
| SHANG Xinyu, BI Xiaoke, TAN Haiyan, et al. Effect of lignin compounded with pyrophosphoric acid piperazine intumescent flame retardant on flame retardant properties of epoxy resin[J]. Journal of Northeast Forestry University, 2023, 51(6): 140-145. | |
| [49] | 薛建英, 徐开玉, 孟繁敏, 等. 磷硅协同提高木质素基聚氨酯材料的阻燃性能[J]. 塑料, 2022, 51(6): 19-23. |
| XUE Jianying, XU Kaiyu, MENG Fanmin, et al. Phosphorus and silicon synergistically improve the flame retardant performance of lignin-based polyurethane materials[J]. Plastics, 2022, 51(6): 19-23. | |
| [50] | KOMISARZ Karolina, MAJKA Tomasz M, PIELICHOWSKI Krzysztof. Chemical and physical modification of lignin for green polymeric composite materials[J]. Materials, 2022, 16(1): 16. |
| [51] | SOLIHAT Nissa Nurfajrin, HIDAYAT Alif Faturahman, TAIB Mohamad Nurul Azman Mohammad, et al. Recent developments in flame-retardant lignin-based biocomposite: Manufacturing, and characterization[J]. Journal of Polymers and the Environment, 2022, 30(11): 4517-4537. |
| [52] | ZHANG Rui, XIAO Xifu, TAI Qilong, et al. Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid)[J]. Polymer Engineering & Science, 2012, 52(12): 2620-2626. |
| [53] | 丁李杰, 徐卉桐, 吴磊, 等. 改性木质素的制备及对聚丙烯阻燃和抗氧化性能的影响[J]. 高分子材料科学与工程, 2022, 38(10): 66-71. |
| DING Lijie, XU Huitong, WU Lei, et al. Preparation of modified lignin and its effect on flame retardant and antioxidant properties of polypropylene[J]. Polymer Materials Science & Engineering, 2022, 38(10): 66-71. | |
| [54] | XING Weiyi, YUAN Haixia, ZHANG Ping, et al. Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: Preparation, thermal stability, fire performance and mechanical properties[J]. Journal of Polymer Research, 2013, 20(9): 234. |
| [55] | 李卓, 翁述贤, 宋飞, 等. 木质素基含氮磷阻燃剂的合成及热重分析[J]. 林产化学与工业, 2021, 41(3): 63-70. |
| LI Zhuo, WENG Shuxian, SONG Fei, et al. Synthesis and thermal analysis of lignin-based flame retardant containing nitrogen and phosphorus[J]. Chemistry and Industry of Forest Products, 2021, 41(3): 63-70. | |
| [56] | LI Jianxing, YAN Zepei, LIU Ming, et al. Triple silicon, phosphorous, and nitrogen-grafted lignin-based flame retardant and its vulcanization promotion for styrene butadiene rubber[J]. ACS Omega, 2023, 8(24): 21549-21558. |
| [57] | DOREZ G, OTAZAGHINE B, TAGUET A, et al. Use of Py-GC/MS and PCFC to characterize the surface modification of flax fibres[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 122-130. |
| [58] | PRIEUR B, MEUB M, WITTEMANN M, et al. Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS)[J]. Polymer Degradation and Stability, 2016, 127: 32-43. |
| [59] | 梁孟珂, 陈静, 戴鹏, 等. 木质素基膨胀型阻燃剂的制备及其应用[J]. 林产化学与工业, 2021, 41(4): 10-16. |
| LIANG Mengke, CHEN Jing, DAI Peng, et al. Preparation and application of lignin-based intumescent flame retardant[J]. Chemistry and Industry of Forest Products, 2021, 41(4): 10-16. | |
| [60] | MATSUSHITA Yasuyuki, HIRANO Daisuke, AOKI Dan, et al. A biobased flame-retardant resin based on lignin[J]. Advanced Sustainable Systems, 2017, 1(10): 1700073. |
| [61] | WENG Shuxian, LI Zhuo, BO Caiying, et al. Design lignin doped with nitrogen and phosphorus for flame retardant phenolic foam materials[J]. Reactive and Functional Polymers, 2023, 185: 105535. |
| [62] | DAI Peng, LIANG Mengke, MA Xiaofeng, et al. Highly efficient, environmentally friendly lignin-based flame retardant used in epoxy resin[J]. ACS Omega, 2020, 5(49): 32084-32093. |
| [63] | CAO Zhenhu, ZHANG Yan, SONG Ping’an, et al. A novel zinc chelate complex containing both phosphorus and nitrogen for improving the flame retardancy of low density polyethylene[J]. Journal of Analytical and Applied Pyrolysis, 2011, 92(2): 339-346. |
| [64] | 宋玉军. 一种木素铝阻燃剂及其制备方法与应用: CN102220145A[P]. 2011-10-19. |
| SONG Yujun. A kind of lignin aluminum flame retardant and its preparation method and application: CN102220145A[P]. 2011-10-19. | |
| [65] | YU Youming, SONG Pingan, JIN Chunde, et al. Catalytic effects of nickel (cobalt or zinc) acetates on thermal and flammability properties of polypropylene-modified lignin composites[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12367-12374. |
| [66] | LIU Lina, HUANG Guobo, SONG Pingan, et al. Converting industrial alkali lignin to biobased functional additives for improving fire behavior and smoke suppression of polybutylene succinate[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4732-4742. |
| [67] | LIU Lina, QIAN Mengbo, SONG Pingan, et al. Fabrication of green lignin-based flame retardants for enhancing the thermal and fire retardancy properties of polypropylene/wood composites[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2422-2431. |
| [68] | 杨晓涵, 宋艳, 林肯, 等. 木质素基成炭剂的制备及在膨胀阻燃聚丙烯的应用[J]. 高分子材料科学与工程, 2022, 38(12): 39-46. |
| YANG Xiaohan, SONG Yan, LIN Ken, et al. Preparation of lignin-based char-forming agent and its application in intumescent flame retardant polypropylene[J]. Polymer Materials Science & Engineering, 2022, 38(12): 39-46. | |
| [69] | 戴静, 陈伟佳, 潘梦丽, 等. 硅改性木质素成炭剂协同膨胀阻燃聚丙烯制备及性能研究[J]. 工业安全与环保, 2023, 49(3): 50-54. |
| DAI Jing, CHEN Weijia, PAN Mengli, et al. Study on preparation and properties of silicon modified lignin charring agent synergistic intumescent flame retardant polypropylene[J]. Industrial Safety and Environmental Protection, 2023, 49(3): 50-54. |
| [1] | LIU Qiyu, LIU Weifeng, QIU Xueqing. Construction strategies of lignin/polymer composite based on interface compatibility strengthening [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2733-2745. |
| [2] | WANG Xinying, LI Aipeng, SU Wenrui, FEI Qiang. Research progress on the artificial regulation of lignin-degrading enzymes [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2694-2704. |
| [3] | AI Jiazhen, ZHANG Zhenlei, ZHAN Guoxiong, MA Longwei, SHI Guojing, YIN Haichuan, ZHANG Xiangping. Advances in "lignin-first" reductive catalytic fractionation process and simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2683-2693. |
| [4] | CHEN Yanjun, DAI Jie, SHAN Junqiang, ZHANG Sixin, JI Lei, ZHU Chenjie, YING Hanjie. Research progress and development trends of cellulosic ethanol in China [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2541-2562. |
| [5] | WANG Shuizhong, SONG Guoyong. Selective hydrogenolysis of lignin into functional monophenols and their high-value utilization [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2535-2540. |
| [6] | FANG Biyao, QIU Jianhao, LI Yixin, YAO Jianfeng. Lignocellulose-derived biochar-modified semiconductors and their photocatalytic applications [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 957-970. |
| [7] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
| [8] | HAN Hongjing, CHE Yu, TIAN Yuxuan, WANG Haiying, ZHANG Yanan, CHEN Yanguang. Advances on catalysts and solvents for catalytic hydrogenolysis of lignin [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 315-324. |
| [9] | FENG Feifei, TIAN Bin, MA Pengfei, WEI Jianxin, XU Long, TIAN Yuanyu, MA Xiaoxun. Research progress on mechanism and methods of lignin separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2512-2525. |
| [10] | BAI Yuli, BAI Fudong, ZHANG Lei, SUN Qimei, LI Xiuzheng. Preparation and process optimization of lignin-based phenolic resin [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1033-1038. |
| [11] | LOU Rui, NIU Taoyuan, CAO Qihang, ZHANG Yiyi, LEI Wenqi, LU Congmin, WANG Zhiwei. Preparation and electrochemical performances of in-situ growth of δ-MnO2 on hierarchical porous carbon derived from LNP [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1013-1021. |
| [12] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
| [13] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
| [14] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
| [15] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |