Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6387-6396.DOI: 10.16085/j.issn.1000-6613.2024-1677
• Industrial catalysis • Previous Articles
ZHAO Shilong1,2(
), MA Huaijun1, WANG Dong’e1, QU Wei1, TIAN Zhijian1(
)
Received:2024-10-18
Revised:2025-03-17
Online:2025-12-08
Published:2025-11-25
Contact:
TIAN Zhijian
赵仕龙1,2(
), 马怀军1, 王冬娥1, 曲炜1, 田志坚1(
)
通讯作者:
田志坚
作者简介:赵仕龙(1996—),男,博士研究生,研究方向为催化新材料及能源转化新催化过程。E-mail:zhaosl@dicp.ac.cn。
CLC Number:
ZHAO Shilong, MA Huaijun, WANG Dong’e, QU Wei, TIAN Zhijian. Catalytic hydrodeoxygenation of amides to amines over Ru-VO x /SiO2 catalysts[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6387-6396.
赵仕龙, 马怀军, 王冬娥, 曲炜, 田志坚. Ru-VO x /SiO2催化酰胺加氢脱氧制备有机胺[J]. 化工进展, 2025, 44(11): 6387-6396.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1677
| 催化剂 | V与Ru的摩尔比 | d①/nm | H2消耗量/mmol·g-1 | SBET/m2·g-1 | 酸量/μmol·g-1 |
|---|---|---|---|---|---|
| SiO2 | — | — | — | 174.6 | 4.0 |
| 4Ru/SiO2 | 0 | 3.51±1.06 | 0.552 | 137.5 | 9.1 |
| 0.25V-4Ru/SiO2 | 0.125 | 3.34±1.01 | 0.648 | 135.1 | 11.0 |
| 0.5V-4Ru/SiO2 | 0.25 | 2.84±0.63 | 0.660 | 136.0 | 13.0 |
| 2V-4Ru/SiO2 | 1 | 2.68±0.60 | 0.848 | 137.0 | 30.2 |
| 4V-4Ru/SiO2 | 2 | 2.71±0.47 | 1.154 | 132.7 | 39.8 |
| 4V/SiO2 | — | — | 0.500 | 132.3 | — |
| 催化剂 | V与Ru的摩尔比 | d①/nm | H2消耗量/mmol·g-1 | SBET/m2·g-1 | 酸量/μmol·g-1 |
|---|---|---|---|---|---|
| SiO2 | — | — | — | 174.6 | 4.0 |
| 4Ru/SiO2 | 0 | 3.51±1.06 | 0.552 | 137.5 | 9.1 |
| 0.25V-4Ru/SiO2 | 0.125 | 3.34±1.01 | 0.648 | 135.1 | 11.0 |
| 0.5V-4Ru/SiO2 | 0.25 | 2.84±0.63 | 0.660 | 136.0 | 13.0 |
| 2V-4Ru/SiO2 | 1 | 2.68±0.60 | 0.848 | 137.0 | 30.2 |
| 4V-4Ru/SiO2 | 2 | 2.71±0.47 | 1.154 | 132.7 | 39.8 |
| 4V/SiO2 | — | — | 0.500 | 132.3 | — |
| 催化剂 | Ru x+/eV | Ru0/eV | V5+/eV | V4+/eV | V4+/(V5++V4+) |
|---|---|---|---|---|---|
| 4Ru/SiO2 | 281.5 | 280.3 | — | — | — |
| 0.25V-4Ru/SiO2 | 281.9 | 280.5 | 517.3 | 515.7 | 0.568 |
| 0.5V-4Ru/SiO2 | 281.8 | 280.5 | 517.4 | 515.8 | 0.576 |
| 2V-4Ru/SiO2 | 281.7 | 280.6 | 517.4 | 515.9 | 0.465 |
| 4V-4Ru/SiO2 | 281.8 | 280.6 | 517.2 | 516.0 | 0.348 |
| 4V/SiO2 | — | — | 517.4 | 516.1 | 0.290 |
| 催化剂 | Ru x+/eV | Ru0/eV | V5+/eV | V4+/eV | V4+/(V5++V4+) |
|---|---|---|---|---|---|
| 4Ru/SiO2 | 281.5 | 280.3 | — | — | — |
| 0.25V-4Ru/SiO2 | 281.9 | 280.5 | 517.3 | 515.7 | 0.568 |
| 0.5V-4Ru/SiO2 | 281.8 | 280.5 | 517.4 | 515.8 | 0.576 |
| 2V-4Ru/SiO2 | 281.7 | 280.6 | 517.4 | 515.9 | 0.465 |
| 4V-4Ru/SiO2 | 281.8 | 280.6 | 517.2 | 516.0 | 0.348 |
| 4V/SiO2 | — | — | 517.4 | 516.1 | 0.290 |
| [1] | FROIDEVAUX Vincent, NEGRELL Claire, CAILLOL Sylvain, et al. Biobased amines: From synthesis to polymers; present and future[J]. Chemical Reviews, 2016, 116(22): 14181-14224. |
| [2] | KOMANOYA Tasuku, KINEMURA Takashi, KITA Yusuke, et al. Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds[J]. Journal of the American Chemical Society, 2017, 139(33): 11493-11499. |
| [3] | MURUGESAN Kathiravan, SENTHAMARAI Thirusangumurugan, CHANDRASHEKHAR Vishwas G, et al. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines[J]. Chemical Society Reviews, 2020, 49(17): 6273-6328. |
| [4] | MAGRO Angel A Núñez, EASTHAM Graham R, COLE-HAMILTON David J. The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides[J]. Chemical Communications, 2007(30): 3154-3156. |
| [5] | TRUONG Cong Chien, MISHRA Dinesh Kumar, Young-Woong SUH. Recent catalytic advances on the sustainable production of primary furanic amines from the one-pot reductive amination of 5-hydroxymethylfurfural[J]. ChemSusChem, 2023, 16(1): e202201846. |
| [6] | SMITH Andrew M, WHYMAN Robin. Review of methods for the catalytic hydrogenation of carboxamides[J]. Chemical Reviews, 2014, 114(10): 5477-5510. |
| [7] | VOLKOV Alexey, TINNIS Fredrik, SLAGBRAND Tove, et al. Chemoselective reduction of carboxamides[J]. Chemical Society Reviews, 2016, 45(24): 6685-6697. |
| [8] | CONSTABLE David J C, DUNN Peter J, HAYLER John D, et al. Key green chemistry research areas—A perspective from pharmaceutical manufacturers[J]. Green Chemistry, 2007, 9(5): 411-420. |
| [9] | CABRERO-ANTONINO Jose R, ADAM Rosa, PAPA Veronica, et al. Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen[J]. Nature Communications, 2020, 11(1): 3893. |
| [10] | Liana HIE, FINE NATHEL Noah F, SHAH Tejas K, et al. Conversion of amides to esters by the nickel-catalysed activation of amide C—N bonds[J]. Nature, 2015, 524(7563): 79-83. |
| [11] | BURCH R, PAUN C, CAO X M, et al. Catalytic hydrogenation of tertiary amides at low temperatures and pressures using bimetallic Pt/Re-based catalysts[J]. Journal of Catalysis, 2011, 283(1): 89-97. |
| [12] | STEIN Mario, BREIT Bernhard. Catalytic hydrogenation of amides to amines under mild conditions[J]. Angewandte Chemie International Edition, 2013, 52(8): 2231-2234. |
| [13] | NAKAGAWA Yoshinao, TAMURA Riku, TAMURA Masazumi, et al. Combination of supported bimetallic rhodium-molybdenum catalyst and cerium oxide for hydrogenation of amide[J]. Science and Technology of Advanced Materials, 2015, 16(1): 14901. |
| [14] | MITSUDOME Takato, MIYAGAWA Kazuya, MAENO Zen, et al. Mild hydrogenation of amides to amines over a platinum-vanadium bimetallic catalyst[J]. Angewandte Chemie International Edition, 2017, 56(32): 9381-9385. |
| [15] | CHEN Ting, SHI Zhangping, ZHANG Guanghui, et al. Molybdenum-incorporated mesoporous silica: Surface engineering toward enhanced metal-support interactions and efficient hydrogenation[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42475-42483. |
| [16] | COECK Robin, BERDEN Sarah, DE VOS Dirk E. Sustainable hydrogenation of aliphatic acyclic primary amides to primary amines with recyclable heterogeneous ruthenium-tungsten catalysts[J]. Green Chemistry, 2019, 21(19): 5326-5335. |
| [17] | PENNETIER Alex, HERNANDEZ Willinton Y, KUSEMA Bright T, et al. Efficient hydrogenation of aliphatic amides to amines over vanadium-modified rhodium supported catalyst[J]. Applied Catalysis A: General, 2021, 624: 118301. |
| [18] | ZHANG Yue, LI Lin, LIU Fei, et al. Synergy between Ru and WO x enables efficient hydrodeoxygenation of primary amides to amines[J]. ACS Catalysis, 2022, 12(11): 6302-6312. |
| [19] | ZHANG Yue, ZHANG Fan, LI Lin, et al. Decoration of Ru nanoparticles with mononuclear MoO x boosts the hydrodeoxygenation of amides to amines[J]. Journal of Catalysis, 2023, 417: 301-313. |
| [20] | TOMISHIGE Keiichi, NAKAGAWA Yoshinao, TAMURA Masazumi. Design of supported metal catalysts modified with metal oxides for hydrodeoxygenation of biomass-related molecules[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 22: 13-21. |
| [21] | LAN Xiaocheng, WANG Tiefeng. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: A review[J]. ACS Catalysis, 2020, 10(4): 2764-2790. |
| [22] | TOMISHIGE Keiichi, NAKAGAWA Yoshinao, TAMURA Masazumi. Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species[J]. Green Chemistry, 2017, 19(13): 2876-2924. |
| [23] | RUIZ PUIGDOLLERS Antonio, SCHLEXER Philomena, TOSONI Sergio, et al. Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies[J]. ACS Catalysis, 2017, 7(10): 6493-6513. |
| [24] | KATTEL Shyam, LIU Ping, CHEN Jingguang G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface[J]. Journal of the American Chemical Society, 2017, 139(29): 9739-9754. |
| [25] | GÓMEZ DE LA FUENTE J L, MARTÍNEZ-HUERTA M V, ROJAS S, et al. Tailoring and structure of PtRu nanoparticles supported on functionalized carbon for DMFC applications: New evidence of the hydrous ruthenium oxide phase[J]. Applied Catalysis B: Environmental, 2009, 88(3/4): 505-514. |
| [26] | WACHS Israel E. Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts[J]. Catalysis Today, 1996, 27(3/4): 437-455. |
| [27] | WU Yan, KONG Linghui, GE Wenting, et al. A porous V/SiO2 sphere composite for the selective oxidation of benzyl alcohol to benzaldehyde in aqueous phase through peroxymonosulfate activation[J]. Journal of Catalysis, 2022, 413: 668-680. |
| [28] | GAO Xingtao, BARE Simon R, WECKHUYSEN Bert M, et al. In situ spectroscopic investigation of molecular structures of highly dispersed vanadium oxide on silica under various conditions[J]. The Journal of Physical Chemistry B, 1998, 102(52): 10842-10852. |
| [29] | Nandini DAS, ECKERT Hellmut, HU Hangchun, et al. Bonding states of surface vanadium(Ⅴ) oxide phases on silica: Structural characterization by vanadium-51 NMR and Raman spectroscopy[J]. The Journal of Physical Chemistry, 1993, 97(31): 8240-8243. |
| [30] | CHRISTODOULAKIS Antonios, MACHLI Maria, LEMONIDOU Angeliki A, et al. Molecular structure and reactivity of vanadia-based catalysts for propane oxidative dehydrogenation studied by in situ Raman spectroscopy and catalytic activity measurements[J]. Journal of Catalysis, 2004, 222(2): 293-306. |
| [31] | WACHS Israel E, ROBERTS Charles A. Monitoring surface metal oxide catalytic active sites with Raman spectroscopy[J]. Chemical Society Reviews, 2010, 39(12): 5002-5017. |
| [32] | DE SOUZA GARRIDO Guilherme, RIBEIRO FRANCISCO Lucas, RABELO-NETO Raimundo C, et al. The role of vanadium oxide species on the performance of Pd/VO x /SiO2 catalysts for HDO of phenol[J]. Journal of Catalysis, 2023, 425: 155-169. |
| [33] | CHEN Yan, WANG Yuan, MA Qingxiang, et al. Cu modified VO x /Silicalite-1 catalysts for propane dehydrogenation in CO2 atmosphere[J]. Fuel, 2024, 363: 130819. |
| [34] | TAUFIQ-YAP Y H, GOH C K, HUTCHINGS G J, et al. Effects of mechanochemical treatment to the vanadium phosphate catalysts derived from VOPO4·2H2O[J]. Journal of Molecular Catalysis A: Chemical, 2006, 260(1/2): 24-31. |
| [35] | SHUN Kazuki, MORI Kohsuke, MASUDA Shinya, et al. Revealing hydrogen spillover pathways in reducible metal oxides[J]. Chemical Science, 2022, 13(27): 8137-8147. |
| [36] | LI Landong, QU Lingling, CHENG Jie, et al. Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts[J]. Applied Catalysis B: Environmental, 2009, 88(1/2): 224-231. |
| [37] | BERTHOUD Romain, Pierre DÉLICHÈRE, GAJAN David, et al. Hydrogen and oxygen adsorption stoichiometries on silica supported ruthenium nanoparticles[J]. Journal of Catalysis, 2008, 260(2): 387-391. |
| [38] | AN Jinghua, WANG Yehong, LU Jianmin, et al. Acid-promoter-free ethylene methoxycarbonylation over Ru-clusters/ceria: The catalysis of interfacial Lewis acid-base pair[J]. Journal of the American Chemical Society, 2018, 140(11): 4172-4181. |
| [39] | ZHOU Jun, GAO Zhe, XIANG Guolei, et al. Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation[J]. Nature Communications, 2022, 13(1): 327. |
| [40] | ZHONG Liping, BARREAU Mathias, CAPS Valérie, et al. Improving the catalytic performance of cobalt for CO preferential oxidation by stabilizing the active phase through vanadium promotion[J]. ACS Catalysis, 2021, 11(9): 5369-5385. |
| [41] | ABDEL-MAGEED Ali M, WIESE Klara, HAUBLE Ashlee, et al. Steering the selectivity in CO2 reduction on highly active Ru/TiO2 catalysts: Support particle size effects[J]. Journal of Catalysis, 2021, 401: 160-173. |
| [42] | YAN Yong, WANG Qiaojuan, JIANG Chunyang, et al. Ru/Al2O3 catalyzed CO2 hydrogenation: Oxygen-exchange on metal-support interfaces[J]. Journal of Catalysis, 2018, 367: 194-205. |
| [43] | ABDEL-MAGEED Ali M, WIDMANN D, OLESEN S E, et al. Selective CO methanation on Ru/TiO2 catalysts: Role and influence of metal-support interactions[J]. ACS Catalysis, 2015, 5(11): 6753-6763. |
| [44] | CHEN Shilong, ABDEL-MAGEED Ali M, DYBALLA Michael, et al. Raising the CO x methanation activity of a Ru/γ-Al2O3 catalyst by activated modification of metal-support interactions[J]. Angewandte Chemie International Edition, 2020, 59(50): 22763-22770. |
| [45] | XUE Yanfeng, LI Junfen, WANG Pengfei, et al. Regulating Al distribution of ZSM-5 by Sn incorporation for improving catalytic properties in methanol to olefins[J]. Applied Catalysis B: Environmental, 2021, 280: 119391. |
| [46] | Alexander ARDAGH M, BO Zhenyu, NAUERT Scott L, et al. Depositing SiO2 on Al2O3: A route to tunable Brønsted acid catalysts[J]. ACS Catalysis, 2016, 6(9): 6156-6164. |
| [47] | PARMETER J E, SCHWALKE U, WEINBERG W H. Interaction of formamide with the Ru(001) surface[J]. Journal of the American Chemical Society, 1988, 110(1): 53-62. |
| [48] | MCGILL Philip R, Tilo SÖHNEL. First-principles study of the formamide adsorption to the oxygen-covered (0001) surface of ruthenium[J]. The Journal of Physical Chemistry C, 2012, 116(27): 14368-14381. |
| [49] | WU Wenchun, LIAO Lifen, CHUANG Chih-Chung, et al. Adsorption and photooxidation of formamide on powdered TiO2 [J]. Journal of Catalysis, 2000, 195(2): 416-419. |
| [50] | LANGESLAY Ryan R, KAPHAN David M, MARSHALL Christopher L, et al. Catalytic applications of vanadium: A mechanistic perspective[J]. Chemical Reviews, 2019, 119(4): 2128-2191. |
| [51] | ZHOU Yingdong, Javier REMÓN, JIANG Zhicheng, et al. Tuning the selectivity of natural oils and fatty acids/esters deoxygenation to biofuels and fatty alcohols: A review[J]. Green Energy & Environment, 2023, 8(3): 722-743. |
| [1] | LIU Zhe, ZHOU Shunli, LI Yongxiang, ZHANG Chengxi, LIU Yipeng. Research progress on alkyl naphthalene synthesis catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 144-158. |
| [2] | LIN Yijie, QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin. Construction and application of heterostructures of photocatalyst TiO2 nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 159-177. |
| [3] | WANG Tao, ZHANG Xuebing, ZHANG Qi, CHEN Qiang, ZHANG Kui, MEN Zhuowu. Effects of reduction-carburization temperature and inlet CO concentration on industrial precipitated iron-based catalyst for Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 178-184. |
| [4] | BAO Xinde, LIU Biye, HUANG Renwei, HONG Yuhao, GUAN Xin, LIN Jinguo. Preparation of biomass-based@CuNiOS composite catalysts for the reduction of organic dye [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 185-196. |
| [5] | ZHAO Siyang, LI Chenran, LIU Yang. Process optimization for regulating diene selectivity of MTO regenerated catalyst through pre-carbon deposition using C4 by-product [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 205-212. |
| [6] | ZHAO Yulong, CAI Kai, YU Shanqing. Influence of pore structure of alumina on the adsorption, diffusion and reactivity of hydrocarbon molecules in catalytic cracking [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 213-221. |
| [7] | LI Junliang, LI Yue, SUN Daolai. Hydrodeoxygenation of 1,2-butanediol to 1-butanol over Cu/SiO2-Al2O3 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 222-231. |
| [8] | LIU Chao, DING Chengao, WU Baoshun, LEI Xinyu, WANG Guangying, YU Zhengwei. Effect of TiO2 support particle size on the denitrification and water/sulfur poisoning resistance of RuO x -V2O5-WO3/TiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 232-242. |
| [9] | ZHANG Hanlin, YUE Xuehai, LIU Junxi, YIN Fengjun. Fabrication of high stability electrocatalyst for oxygen evolution reaction by Ru-Sr-Ir electrodeposition [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 243-251. |
| [10] | GAN Yufeng, CHEN Jingran, ZHOU Zhihua, PAN Chunrong, ZHANG Daqian, ZHONG Junwei. Research on paraffin-based composite phase change materials and applications in energy storage systems [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 277-287. |
| [11] | LIU Ying, BAO Cheng, ZHANG Xinxin. Modified copper-carrying activated carbon for hydrogen purification [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 413-421. |
| [12] | WANG Wenjun, LIU Ruixin, WANG Jun, ZHANG Qinglei, HOU Li’an. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5351-5362. |
| [13] | ZENG Jin, GAO Yan, WANG Zhaopeng, XIE Yuyun, LIU Jun, LIANG Qi, WANG Chunying. Degradation mechanism of 2,4-dichlorophenoxyacetic acid by NaYF4:Yb,Tm composite TiO2/Bi2WO6 photocatalyst and evaluation of products toxicity [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5416-5431. |
| [14] | XU Cong, FENG Yingjie, LIU Dongbing, XIE Zaiku. Review of zeolite confined Pt-based catalysts for propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4954-4967. |
| [15] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |