| [1] |
魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73.
|
|
WEI Jinjia, LIU Lei, YANG Xiaoping. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices[J]. CIESC Journal, 2023, 74(1): 60-73.
|
| [2] |
李广义, 张俊洪, 高键鑫. 大功率电力电子器件散热研究综述[J]. 兵器装备工程学报, 2020, 41(11): 8-14.
|
|
LI Guangyi, ZHANG Junhong, GAO Jianxin. Review on heat dissipation of high power electronic devices[J]. Journal of Ordnance Equipment Engineering, 2020, 41(11): 8-14.
|
| [3] |
BELHARDJ Said, MIMOUNI Said, SAIDANE Abdelkader, et al. Using microchannels to cool microprocessors: A transmission-line-matrix study[J]. Microelectronics Journal, 2003, 34(4): 247-253.
|
| [4] |
GARIMELLA Suresh V. Advances in mesoscale thermal management technologies for microelectronics[J]. Microelectronics Journal, 2006, 37(11): 1165-1185.
|
| [5] |
林兵谣, 谢荣建, 陶乐仁. 低温环路热管综述[J]. 热能动力工程, 2020, 35(3): 1-12.
|
|
LIN Bingyao, XIE Rongjian, TAO Leren. Review of cryogenic loop heat pipe technology[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(3): 1-12.
|
| [6] |
MAYDANIK Yury Folievich. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5/6): 635-657.
|
| [7] |
熊康宁, 吴伟, 汪双凤. 平板形蒸发器环路热管的研究进展[J]. 化工进展, 2021, 40(10): 5388-5402.
|
|
XIONG Kangning, WU Wei, WANG Shuangfeng. Research and development of loop heat pipe with flat evaporator[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5388-5402.
|
| [8] |
WENG Chuangbin, WANG Zhangyuan, XIANG Jinwei, et al. Numerical and experimental investigations of the micro-channel flat loop heat pipe (MCFLHP) heat recovery system for data centre cooling and heat recovery[J]. Journal of Building Engineering, 2021, 35: 102088.
|
| [9] |
JUNG Eui Guk, Joon Hong BOO. Experimental observation of thermal behavior of a loop heat pipe with a bypass line under high heat flux[J]. Energy, 2020, 197: 117241.
|
| [10] |
HE Song, ZHOU Ping, LIU Wei, et al. Experimental study on thermal performance of loop heat pipe with a composite-material evaporator for cooling of electronics[J]. Applied Thermal Engineering, 2020, 168: 114897.
|
| [11] |
ZHANG Haonan, ZHANG Yunfei, BAI Lizhan, et al. Thermal performance of an ammonia loop heat pipe using a rectangular evaporator with liquid-guiding channels[J]. Applied Thermal Engineering, 2023, 226: 120348.
|
| [12] |
VASILIEV Leonid, LOSSOUARN David, ROMESTANT Cyril, et al. Loop heat pipe for cooling of high-power electronic components[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 301-308.
|
| [13] |
郑宿正, 李南茜, 董德平. 平板陶瓷毛细芯环路热管的实验与仿真[J]. 化工进展, 2022, 41(7): 3510-3518.
|
|
ZHENG Suzheng, LI Nanxi, DONG Deping. Experimental and numerical investigation of loop heat pipe with flat ceramic capillary wick[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3510-3518.
|
| [14] |
SILK Eric A, MYRE David. Fractal loop heat pipe performance testing with a compressed carbon foam wick structure[J]. Applied Thermal Engineering, 2013, 59(1/2): 290-297.
|
| [15] |
PUTRA Nandy, SALEH Rosari, SEPTIADI Wayan Nata, et al. Thermal performance of biomaterial wick loop heat pipes with water-base Al2O3 nanofluids[J]. International Journal of Thermal Sciences, 2014, 76: 128-136.
|
| [16] |
XU Jiayin, ZHANG Li, XU Hong, et al. Experimental investigation and visual observation of loop heat pipes with two-layer composite wicks[J]. International Journal of Heat and Mass Transfer, 2014, 72: 378-387.
|
| [17] |
郭浩, 纪献兵, 周儒鸿, 等. 超亲水毛细芯环路热管启动及热性能分析[J]. 化工进展, 2020, 39(4): 1227-1234.
|
|
GUO Hao, JI Xianbing, ZHOU Ruhong, et al. Analysis of start-up and thermal performance of super-hydrophilic porous wick loop heat pipe[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1227-1234.
|
| [18] |
胡卓焕, 罗婷, 许佳寅, 等. 毛细芯蒸汽槽道孔径对环路热管(LHP)传热性能影响研究[J]. 热能动力工程, 2022, 37(5): 86-92.
|
|
HU Zhuohuan, LUO Ting, XU Jiayin, et al. Research on effect of various wick steam groove structures on heat transfer performance of loop heat pipe[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(5): 86-92.
|
| [19] |
KU Jentung, OTTENSTEIN Laura, KAYA Tarik, et al. Testing of a loop heat pipe subjected to variable accelerations—Part 1: Start-up[R]. SAE Technical Paper, 2000: 01-2488.
|
| [20] |
WANG Huanfa, LIN Guiping, GUO Yuandong, et al. Experimental investigation on the performance of a high capacity dual compensation chamber loop heat pipe under the effect of acceleration[J]. Case Studies in Thermal Engineering, 2024, 61: 105013.
|
| [21] |
FLEMING Andrew J, LELAND Quinn H, YERKES Kirk L, et al. Aircraft thermal management using loop heat pipes: Experimental simulation of high acceleration environments using the centrifuge table test bed[C]//SAE Technical Paper Series. Pennsylvania: SAE International, 2016: 77-86.
|
| [22] |
Xiaochen LYU, XIE Yongqi, ZHANG Hongxing, et al. Temperature oscillation of a dual compensation chamber loop heat pipe under acceleration conditions[J]. Applied Thermal Engineering, 2021, 198: 117450.
|
| [23] |
WANG Junxiang, TANG Yong, HUANG Haoyi, et al. Rice-inspired oriented copper fiber wick with excellent capillary performance for ultra-thin vapor chamber[J]. Applied Thermal Engineering, 2024, 236: 121573.
|
| [24] |
JAFARI Davoud, WITS Wessel W. The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 420-442.
|
| [25] |
王新越, 李骥. 重力对新型大功率环路热管传热性能影响的实验研究[J]. 中国科学院大学学报(中英文), 2024, 41(4): 442-451.
|
|
WANG Xinyue, LI Ji. Experimental study on the effect of gravity on the heat transfer performance of a novel high-power looped heat pipe[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(4): 442-451.
|