Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6153-6160.DOI: 10.16085/j.issn.1000-6613.2024-1510
• Chemical processes and equipment • Previous Articles
ZHANG Mingyu1(
), QIU Li1, CUI Changqing2, TIAN Hui2, LIU Hongzhao2, YANG Jingxuan1,3(
), ZHANG Zhonglin1,3, HAO Xiaogang1,3, ABULITI 4
Received:2024-09-14
Revised:2024-10-29
Online:2025-12-08
Published:2025-11-25
Contact:
YANG Jingxuan
张明钰1(
), 邱丽1, 崔长青2, 田辉2, 刘宏钊2, 杨景轩1,3(
), 张忠林1,3, 郝晓刚1,3, 阿布里提null4
通讯作者:
杨景轩
作者简介:张明钰(1996—),女,硕士研究生,研究方向为碳资源清洁转化工艺及装备、多相流动、传递和分离过程及装备。E-mail:zmy970972296@163.com。
基金资助:CLC Number:
ZHANG Mingyu, QIU Li, CUI Changqing, TIAN Hui, LIU Hongzhao, YANG Jingxuan, ZHANG Zhonglin, HAO Xiaogang, ABULITI . Optimizing the combustion process in the vertical fire passage of a coke oven by adjusting the inlet gas velocity[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6153-6160.
张明钰, 邱丽, 崔长青, 田辉, 刘宏钊, 杨景轩, 张忠林, 郝晓刚, 阿布里提null. 调节入口气速优化焦炉立火道内燃烧过程[J]. 化工进展, 2025, 44(11): 6153-6160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1510
| 结构 | 尺寸/mm |
|---|---|
| 立火道长度 | 358 |
| 立火道高度 | 5945 |
| 二段空气入口长度 | 232 |
| 跨越孔高度 | 450(大),108(小) |
| 立火道宽度 | 846 |
| 隔墙厚度 | 180 |
| 二段空气入口宽度 | 30 |
| 循环孔高度 | 120 |
| 结构 | 尺寸/mm |
|---|---|
| 立火道长度 | 358 |
| 立火道高度 | 5945 |
| 二段空气入口长度 | 232 |
| 跨越孔高度 | 450(大),108(小) |
| 立火道宽度 | 846 |
| 隔墙厚度 | 180 |
| 二段空气入口宽度 | 30 |
| 循环孔高度 | 120 |
| 成分 | 体积分数/% |
|---|---|
| CO | 26.78 |
| H2 | 2.58 |
| CH4 | 0.19 |
| O2 | 0.29 |
| CO2 | 10.52 |
| H2O | 4.36 |
| N2 | 55.28 |
| 成分 | 体积分数/% |
|---|---|
| CO | 26.78 |
| H2 | 2.58 |
| CH4 | 0.19 |
| O2 | 0.29 |
| CO2 | 10.52 |
| H2O | 4.36 |
| N2 | 55.28 |
| 高炉煤气 | 指前因子(PEF) | 活化能(AE) |
|---|---|---|
| CH4 | 5.012e11 | 2e8 |
| H2 | 9.87e8 | 3.1e7 |
| CO | 2.239e12 | 1.7e8 |
| 高炉煤气 | 指前因子(PEF) | 活化能(AE) |
|---|---|---|
| CH4 | 5.012e11 | 2e8 |
| H2 | 9.87e8 | 3.1e7 |
| CO | 2.239e12 | 1.7e8 |
| 项目 | 速度/m·s-1 | 出口NO x 浓度/mg·m-3 | 高向温度平均值/K | 高向温度标准差/K | k/m2·s-2 | ε/m2·s-3 |
|---|---|---|---|---|---|---|
| 工况1 | 1.34 | 387.14 | 1579.80 | 55.84 | 0.13 | 0.38 |
| 工况2 | 2.11 | 330.69 | 1582.30 | 58.28 | 0.15 | 0.49 |
| 工况3 | 4.22 | 87.49 | 1599.42 | 49.42 | 0.29 | 1.65 |
| 工况4 | 8.48 | 22.94 | 1579.82 | 49.52 | 0.60 | 7.99 |
| 项目 | 速度/m·s-1 | 出口NO x 浓度/mg·m-3 | 高向温度平均值/K | 高向温度标准差/K | k/m2·s-2 | ε/m2·s-3 |
|---|---|---|---|---|---|---|
| 工况1 | 1.34 | 387.14 | 1579.80 | 55.84 | 0.13 | 0.38 |
| 工况2 | 2.11 | 330.69 | 1582.30 | 58.28 | 0.15 | 0.49 |
| 工况3 | 4.22 | 87.49 | 1599.42 | 49.42 | 0.29 | 1.65 |
| 工况4 | 8.48 | 22.94 | 1579.82 | 49.52 | 0.60 | 7.99 |
| 项目 | 速度/m·s-1 | 出口NO x 浓度/mg·m-3 | 高向温度平均值/K | 总体标准差/K | k/m2·s-2 | ε/m2·s-3 |
|---|---|---|---|---|---|---|
| 工况3 | 1.25 | 87.49 | 1599.42 | 49.42 | 0.29 | 1.65 |
| 工况5 | 1.70 | 61.58 | 1588.04 | 48.81 | 0.25 | 1.60 |
| 工况6 | 1.14 | 82.16 | 1585.10 | 47.49 | 0.27 | 1.65 |
| 工况7 | 0.97 | 84.15 | 1586.61 | 50.55 | 0.28 | 1.68 |
| 项目 | 速度/m·s-1 | 出口NO x 浓度/mg·m-3 | 高向温度平均值/K | 总体标准差/K | k/m2·s-2 | ε/m2·s-3 |
|---|---|---|---|---|---|---|
| 工况3 | 1.25 | 87.49 | 1599.42 | 49.42 | 0.29 | 1.65 |
| 工况5 | 1.70 | 61.58 | 1588.04 | 48.81 | 0.25 | 1.60 |
| 工况6 | 1.14 | 82.16 | 1585.10 | 47.49 | 0.27 | 1.65 |
| 工况7 | 0.97 | 84.15 | 1586.61 | 50.55 | 0.28 | 1.68 |
| [1] | 齐洪涛. 山西炼焦煤资源状况分析与太钢炼焦配煤结构的对策[J]. 山西冶金, 2007, 30(5): 1-3. |
| QI Hongtao. Analysis on state of coking coal resources in Shanxi Province and countermeasures for structure of coal blend for coking of TISCO[J]. Shanxi Metallurgy, 2007, 30(5): 1-3. | |
| [2] | 范文生. 山西焦煤打造全球最大炼焦煤供应商若干思考[J]. 煤炭经济研究, 2017, 37(1): 6-9. |
| FAN Wensheng. Several considerations on Shanxi coking coal group to be globe largest coking coal supplier[J]. Coal Economic Research, 2017, 37(1): 6-9. | |
| [3] | 2023年6月15日: 生态环境部发布《关于推进实施焦化行业超低排放的意见(征求意见稿)》[J]. 煤化工, 2023, 51(3): 137-138. |
| 15th June, 2023: The Ministry of Ecology and Environment issued the opinions on promoting the implementation of ultra-low emission in coking industry (draft for comment)[J]. Coal Chemical Industry, 2023, 51(3): 137-138. | |
| [4] | 张慧玲. 焦炉烟气脱硝技术的分析与探讨[J]. 山西焦煤科技, 2016, 40(S1): 151-153. |
| ZHANG Huiling. Analysis and discussion on denitration technology of coke oven flue gas[J]. Shanxi Coking Coal Science & Technology, 2016, 40(S1): 151-153. | |
| [5] | 周海成, 高志芳, 龙红明, 等. 烧结烟气中NO x 治理技术及发展趋势[J]. 洁净煤技术, 2021, 27(5): 77-88. |
| ZHOU Haicheng, GAO Zhifang, LONG Hongming, et al. Governance technology and development trend of NO x in sintering[J]. Clean Coal Technology, 2021, 27(5): 77-88. | |
| [6] | 何选明, 陈康, 潘叶, 等. 焦炉煤气低NO x 燃烧技术研究进展[J]. 燃料与化工, 2013, 44(1): 6-10. |
| HE Xuanming, CHEN Kang, PAN Ye, et al. Development in the study of low NO x combustion technology of COG[J]. Fuel & Chemical Processes, 2013, 44(1): 6-10. | |
| [7] | 吴筱, 黄国强, 梁红英. 天然气燃烧中NO x 减排的数学模型[J]. 化工进展, 2007, 26(1): 109-112. |
| WU Xiao, HUANG Guoqiang, LIANG Hongying. Release control model of NO x in natural gas combustion[J]. Chemical Industry and Engineering Progress, 2007, 26(1): 109-112. | |
| [8] | 余明程, 王光华, 李文兵, 等. 焦炉加热过程中热力型氮氧化物的生成及影响因素研究[J]. 工业安全与环保, 2016, 42(10): 75-78. |
| YU Mingcheng, WANG Guanghua, LI Wenbing, et al. Research on formation and influence factors of thermal NO x during coke oven heating[J]. Industrial Safety and Environmental Protection, 2016, 42(10): 75-78. | |
| [9] | 田宝龙, 朱灿朋, 鲁彦, 等. 焦炉分段加热技术对NO x 生成的影响[J]. 燃料与化工, 2016, 47(1): 4-8, 11. |
| TIAN Baolong, ZHU Canpeng, LU Yan, et al. Influence of multi-stage heating technology to the generation of NO x [J]. Fuel & Chemical Processes, 2016, 47(1): 4-8, 11. | |
| [10] | 曹艺华, 曹青, 杨景轩, 等. 两段加热式双联火道内燃烧特性的数值模拟[J]. 太原理工大学学报, 2024, 55(3): 573-580. |
| CAO Yihua, CAO Qing, YANG Jingxuan, et al. Numerical simulation of combustion characteristics in a two-stage heated twin fire channel[J]. Journal of Taiyuan University of Technology, 2024, 55(3): 573-580. | |
| [11] | 孟得慧, 包丹琪, 楼国锋, 等. 影响焦炉NO x 生成的数值模拟[J]. 燃料与化工, 2019, 50(3): 11-15. |
| MENG Dehui, BAO Danqi, LOU Guofeng, et al. Numerical simulation of the influence on NO x formation in waste gas[J]. Fuel & Chemical Processes, 2019, 50(3): 11-15. | |
| [12] | 王广荣, 李雪辉. 焦炉烟气氮氧化物生成机理及控制[J]. 区域治理, 2021(33): 198-199. |
| WANG Guangrong, LI Xuehui. Formation mechanism and control of nitrogen oxides in coke oven flue gas[J]. Regional Governance, 2021(33): 198-199. | |
| [13] | 张洪波, 张天宇, 杨俊峰. 6.78m捣固焦炉应用废气回配技术数值模拟研究[J]. 燃料与化工, 2022, 53(1): 21-25. |
| ZHANG Hongbo, ZHANG Tianyu, YANG Junfeng. Numerical simulation of waste gas recycling technology in 6.78m stamp-charge battery[J]. Fuel & Chemical Processes, 2022, 53(1): 21-25. | |
| [14] | 易正明, 张丑, 周正, 等. 不同富氧条件下高炉煤气和焦炉煤气燃烧数值模拟[J]. 热能动力工程, 2022, 37(2): 84-91. |
| YI Zhengming, ZHANG Chou, ZHOU Zheng, et al. Numerical simulation of blast furnace gas and coke oven gas combustion under different oxygen enrichment conditions[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(2): 84-91. | |
| [15] | 金珂, 冯妍卉, 张欣欣, 等. 耦合燃烧室的焦炉炭化室内热过程的数值分析[J]. 化工学报, 2012, 63(3): 788-795. |
| JIN Ke, FENG Yanhui, ZHANG Xinxin, et al. Numerical analysis on thermal processes in coupled coking and combustion chambers of coke oven[J]. CIESC Journal, 2012, 63(3): 788-795. | |
| [16] | 张婷, 卫宏远, 郑倩倩. 焦炉燃烧室氮氧化物形成的数值模拟[J]. 化学工业与工程, 2016, 33(1): 82-89. |
| ZHANG Ting, WEI Hongyuan, ZHENG Qianqian. Numerical simulation of NO x formation in the combustion chamber of a coke oven[J]. Chemical Industry and Engineering, 2016, 33(1): 82-89. | |
| [17] | 胡坤, 李振北. ANSYS ICEM CFD工程实例详解[M]. 北京: 人民邮电出版社, 2014: 356. |
| HU Kun, LI Zhenbei. Detailed explanation of ANSYS ICEM CFD engineering example[M]. Beijing: Posts & Telecom Press, 2014: 356. | |
| [18] | 孙恩吉, 李红果, 王敏. 基于Realizable k-ε湍流模型的氨气泄漏数值模拟研究[J]. 中国安全生产科学技术, 2017, 13(2): 114-118. |
| SUN Enji, LI Hongguo, WANG Min. Study on numerical simulation of ammonia leakage based on Realizable k-ε turbulence model[J]. Journal of Safety Science and Technology, 2017, 13(2): 114-118. | |
| [19] | 丁程兵, 陈迁乔, 钟秦. 三种湍流模型下搅拌釜内气含率特性的模拟[J]. 化工进展, 2013, 32(11): 2569-2573. |
| DING Chengbing, CHEN Qianqiao, ZHONG Qin. Study of characteristics of gas holdup in stirred tank under three turbulence models[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2569-2573. | |
| [20] | FIVELAND W A. Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method[J]. Journal of Thermophysics and Heat Transfer, 1988, 2(4): 309-316. |
| [21] | 林蔚, 冯妍卉, 金珂, 等. 多点供热对焦化过程影响的数值分析与优化[J]. 钢铁, 2015, 50(3): 25-32. |
| LIN Wei, FENG Yanhui, JIN Ke, et al. Numerical analysis and optimization of multiple-point heat supply and its influence on coking processes[J]. Iron & Steel, 2015, 50(3): 25-32. | |
| [22] | SMOLKA Jacek, SLUPIK Lukasz, Adam FIC, et al. 3-D coupled CFD model of a periodic operation of a heating flue and coke ovens in a coke oven battery[J]. Fuel, 2016, 165: 94-104. |
| [23] | FIVELAND W-A, JAMALUDDIN A-S. Three-dimensional spectral radiative heat transfer solutions by the discrete-ordinates method[J]. Journal of Thermophysics and Heat Transfer, 1991, 5: 335-339. |
| [24] | 刘朝峰. 板料成形数值模拟中网格局部加密方法的研究及应用[D]. 长沙: 中南大学, 2012. |
| LIU Zhaofeng. The research and application of the grid local refinement method in the sheet metal forming numerical simulation [D]. Changsha: Central South University, 2012. | |
| [25] | MANGRULKAR Chidanand K, DHOBLE Ashwinkumar S, CHAKRABARTY Shyamal G, et al. Experimental and CFD prediction of heat transfer and friction factor characteristics in cross flow tube bank with integral splitter plate[J]. International Journal of Heat and Mass Transfer, 2017, 104: 964-978. |
| [26] | 程嘉颖, 宗超, 包晋榕, 等. 烟气内循环降低氮氧化物过程的模拟研究[J]. 煤炭转化, 2023, 46(4): 69-76. |
| CHENG Jiaying, ZONG Chao, BAO Jinrong, et al. Numerical simulation of NO x reduction process of internal flue gas recirculation[J]. Coal Conversion, 2023, 46(4): 69-76. | |
| [27] | 李德顺, 马国林, 郭涛, 等. 基于两方程湍流模型的均匀流中湍流动能衰减规律研究[J]. 太阳能学报, 2022, 43(4): 418-427. |
| LI Deshun, MA Guolin, GUO Tao, et al. Research on attenuation law of turbulent kinetic energy in uniform flow based on two-equation turbulence model[J]. Acta Energiae Solaris Sinica, 2022, 43(4): 418-427. | |
| [28] | 舒朝晖, 段亚雄, 童泽昊, 等. 采用不同湍流模型计算贯流风机内流场的比较分析[J]. 流体机械, 2018, 46(2): 19-23. |
| SHU Zhaohui, DUAN Yaxiong, TONG Zehao, et al. Comparsion of turbulence models on calculation of inner flow field of the cross flow fan[J]. Fluid Machinery, 2018, 46(2): 19-23. | |
| [29] | 宫武旗, 黄淑娟, 徐忠. 边界层中湍动能和耗散能最大的尺度分量特征研究[J]. 航空学报, 2001, 22(4): 293-297. |
| GONG Wuqi, HUANG Shujuan, XU Zhong. Characteristics of scale components having maximal dynamic energy and dissipation energy in smooth turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(4): 293-297. | |
| [30] | WANG Jimin, HAN Wuwang, CHEN Xi, et al. Numerical simulation on coking process of coke oven with external flue gas recirculation[J]. Ironmaking & Steelmaking: Processes, Products and Applications, 2024, 51(4): 339-355. |
| [31] | 秦瑾, 朱灿朋, 郭喜云. 捣固焦炉斜道口调节砖排列方式探讨[J]. 煤化工, 2016, 44(3): 37-39. |
| QIN Jin, ZHU Canpeng, GUO Xiyun. Discussion on regulating brick arrangement of connecting duct of stamp-charged coke oven[J]. Coal Chemical Industry, 2016, 44(3): 37-39. |
| [1] | WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28. |
| [2] | ZHU Ying, LI Yilin, LIU Jianguo, CAO Yingnan, HUO Yaoqiang, LIU Wei, WANG Juan, LI Yiting, ZHANG Ximei, LI Bin. Membrane fouling composition and mechanism of coking wastewater membrane treatment process [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 518-527. |
| [3] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [4] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [5] | SHEN Xiankun, JIA Zhiyong, LAN Xiaocheng, WANG Tiefeng. Progress on CFD-PBM coupled model for slurry reactors [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4408-4418. |
| [6] | XU Wenjun, ZHANG Jianbo, GUO Yanxia, LI Huiquan, LI Shaopeng, REN Yiling. Effects of anchor frame impeller structure on flow field in stirred tank during gasification slag activation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4463-4477. |
| [7] | WANG Yabin, ZHAO Bidan, XU Fan, LAN Bin, WANG Junwu. Full-loop simulation of gas-solid flow in CFB unit using mesoscience-based structural model [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4500-4512. |
| [8] | AN Shu, MA Yongli, FENG Lei, ZHANG Zihao, LIU Mingyan. CFD simulation of process of water-based foaming through net foam generator [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4545-4555. |
| [9] | LU Yucheng, HUANG Tao, LUO Yajun, LIU Jiahui, GONG Feiyan, YAN Chaoyu, LIU Xiaoxing. CFD modeling of gas-liquid-solid mixing characteristics in stirred tank for water-suspension granulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4556-4566. |
| [10] | LIU Tingting, MENG Zicheng, MU Lijing, CHEN Xizhong, LIU Cenfan. Fast prediction of 3D physical fields in ethylene oxidation reactors based on graph convolutional neural networks [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4571-4581. |
| [11] | ZHOU Penghui, ZENG Lin, DAI Li, LI Jiale, CHEN Jianqi, LI Jianping, WANG Hualin. Numerical simulation of mixing characteristics of a micro-hydrocyclone mixer [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3280-3287. |
| [12] | ZHOU Penghui, ZENG Lin, DAI Li, FENG Xiaobo, NI Di. Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3271-3279. |
| [13] | ZHANG Lei, ZHANG Xinru, WANG Yonghong, LI Jinping, LIU Chunbo. Research progress of two-dimensional nanomaterial-based mixed matrix membranes in organic pervaporation separation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3324-3335. |
| [14] | HUANG Zhengfeng, WANG Heng, HONG Hao, ZHU Guorui. Characterization of vortex shedding in concentric circular transition arrangement tube bundles [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 698-705. |
| [15] | WANG Siyi, XU Jianliang, DAI Zhenghua, WU Guoyi, WANG Fuchen. Numerical simulation of chemical vapor deposition in polycrystalline silicon reduction furnace [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 706-716. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |