| [1] |
张晨曦, 蔡达理, 贾瞾, 等. 流化床中气固均匀分布的失稳现象[J]. 化工进展, 2019, 38(1): 155-170.
|
|
ZHANG Chenxi, CAI Dali, JIA Zhao, et al. Instability of gas-solid uniform distribution in fluidized beds[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 155-170.
|
| [2] |
刘道银, 陈柄岐, 张祖扬, 等. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362.
|
|
LIU Daoyin, CHEN Bingqi, ZHANG Zuyang, et al. Numerical simulation of the effect of particle agglomerate structure on traction characteristics[J].CIESC Journal, 2023, 74(6): 2351-2362.
|
| [3] |
李新菊, 管小平, 杨宁, 等. 基于能量最小多尺度曳力模型的搅拌槽内气液两相流计算流体力学模拟及实验研究[J]. 化工进展, 2017, 36(11): 4000-4009.
|
|
LI Xinju, GUAN Xiaoping, YANG Ning, et al. Computational fluid dynamics simulation and experimental study of gas-liquid two-phase flow in a stirred tank based on the energy-minimization multi-scale drag model[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4000-4009.
|
| [4] |
KARIMI Farhad, HAGHSHENASFARD Masoud, Rahmat SOTUDEH-GHAREBAGH, et al. Enhancing the fluidization quality of nanoparticles using external fields[J]. Advanced Powder Technology, 2018, 29(12): 3145-3154.
|
| [5] |
皮立强, 高凯歌, 杨兴灿, 等. 纳米TiO2颗粒在声场导向管喷动流化床中的流化特性[J]. 化学反应工程与工艺, 2016, 32(2): 114-119.
|
|
PI Liqiang, GAO Kaige, YANG Xingcan, et al. Fluidization characteristics of TiO2 nanoparticles in an acoustic field guided tube jet fluidized bed[J]. Chemical Reaction Engineering and Technology, 2016, 32(2): 114-119.
|
| [6] |
师毓辉, 邢继远, 姜雪晗, 等. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829.
|
|
SHI Yuhui, XING Jiyuan, JIANG Xuehan, et al. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM[J]. CIESC Journal, 2024, 75(5): 1816-1829.
|
| [7] |
ZHANG Liyuan, LIU Daoyin, WU Xin, et al. Enhancing fluidization quality of nanoparticle agglomerates by combining vibration, stirring and jet assistances[J]. Powder Technology, 2023, 430: 118996.
|
| [8] |
ZHAO Zhiduan, LIU Daoyin, MA Jiliang, et al. Fluidization of nanoparticle agglomerates assisted by combining vibration and stirring methods[J]. Chemical Engineering Journal, 2020, 388: 124213.
|
| [9] |
AKHAVAN Ali, RAHMAN Farhana, WANG Shan, et al. Enhanced fluidization of nanoparticles with gas phase pulsation assistance[J]. Powder Technology, 2015, 284: 521-529.
|
| [10] |
ALGHAMDI Metib, AKBAR Noreen Sher, Fiaz HUSSAIN M, et al. Thermodynamic study of hybrid nanofluid to explore synergistic effects of multiple ferromagnetic nanoparticles in co-axial disks for magnetized fluid[J]. Tribology International, 2023, 188: 108867.
|
| [11] |
DE OLIVEIRA D G, WU C L, NANDAKUMAR K. Numerical investigation of pulsed fluidized bed using CFD-DEM: Insights on the dynamics[J]. Powder Technology, 2020, 363: 745-756.
|
| [12] |
JIA Dening, BI Xiaotao, Jim LIM C, et al. Heat transfer in a tapered fluidized bed of biomass particles with pulsed gas flow[J]. Particuology, 2019, 42: 2-14.
|
| [13] |
Leonard Jing Jie LIM, Eldin Wee Chuan LIM. Mixing and segregation behaviors of a binary mixture in a pulsating fluidized bed[J]. Powder Technology, 2019, 345: 311-328.
|
| [14] |
DONG Liang, ZHU Fenglong, LI Yanjiao, et al. Experimental and numerical study of the characteristics of the forced oscillation in a pulsation fluidized bed (PFB) for coal separation[J]. Chemical Engineering Science, 2021, 234: 116459.
|
| [15] |
张晓光. 脉动流化床内颗粒分离行为的数值模拟[J]. 节能技术, 2021, 39(1): 50-53.
|
|
ZHANG Xiaoguang. Simulation of segregation behaviors of binary mixture in a fluidized bed with pulsed flow[J]. Energy Conservation Technology, 2021, 39(1): 50-53.
|
| [16] |
Syed Sadiq ALI, ASIF Mohammad. Fluidization of nano-powders: Effect of flow pulsation[J]. Powder Technology, 2012, 225: 86-92.
|
| [17] |
LEE C-H, ERICKSON L E, GLASGOW L A. Bubble breakup and coalescence in turbulent gas-liquid dispersions[J]. Chemical Engineering Communications, 1987, 59(1/2/3/4/5/6): 65-84.
|
| [18] |
LUO Hean, SVENDSEN Hallvard F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233.
|
| [19] |
Alain LINÉ, FRANCES Christine. Discussion on DQMOM to solve a bivariate population balance equation applied to a grinding process[J]. Powder Technology, 2016, 295: 234-244.
|
| [20] |
CHEN Juhui, YANG Tianyi, LI Dan, et al. Evaluation of direct quadrature method of moment for the internally circulating fluidized bed simulation with ultrafine particles[J]. Advanced Powder Technology, 2021, 32(7): 2359-2369.
|
| [21] |
DING Jianmin, GIDASPOW Dimitri. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4): 523-538.
|
| [22] |
魏利平, 江国栋, 滕海鹏. 双组分黏性颗粒相间曳力模型[J]. 工程热物理学报, 2019, 40(1): 114-117.
|
|
WEI Liping, JIANG Guodong, TENG Haipeng. Cohesive particle-particle drag model[J]. Journal of Engineering Thermophysics, 2019, 40(1): 114-117.
|
| [23] |
王垚, 金涌, 魏飞, 等. 纳米级SiO2聚团散式流化中聚团参数及曳力系数[J]. 清华大学学报(自然科学版), 2001, 41(S1): 32-35.
|
|
WANG Yao, JIN Yong, WEI Fei, et al. Agglomeration parameters and drag coefficient in nano-SiO2 agglomerated dispersed fluidization[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(S1): 32-35.
|
| [24] |
FAN Rong, MARCHISIO Daniele L, Rodney O FOX. Application of the direct quadrature method of moments to polydisperse gas-solid fluidized beds[J]. Powder Technology, 2004, 139(1): 7-20.
|
| [25] |
MARCHISIO Daniele L, Dennis VIGIL R, Rodney O FOX. Quadrature method of moments for aggregation-breakage processes[J]. Journal of Colloid and Interface Science, 2003, 258(2): 322-334.
|
| [26] |
MA Hongye, YU Mingzhou, JIN Hanhui. A study of the evolution of nanoparticle dynamics in a homogeneous isotropic turbulence flow via a DNS-TEMOM method[J]. Journal of Hydrodynamics, 2020, 32(6): 1091-1099.
|
| [27] |
ASIF Mohammad, AL-GHURABI Ebrahim H, AJBAR Abdelhamid, et al. Hydrodynamics of pulsed fluidized bed of ultrafine powder: Fully collapsing fluidized bed[J]. Processes, 2020, 8(7): 807.
|
| [28] |
BAHRAMIAN Alireza, OLAZAR Martin. Influence of restitution and friction coefficients on the velocity field of polydisperse TiO2 agglomerates in a conical fluidized bed by the adhesive CFD-DEM simulation[J]. Powder Technology, 2021, 386: 491-504.
|
| [29] |
WANG X S, RAHMAN F, RHODES M J. Nanoparticle fluidization and geldart’s classification[J]. Chemical Engineering Science, 2007, 62(13): 3455-3461.
|
| [30] |
柯希玮, 刘道银, 闫珂, 等. 基于动态平衡预测纳米颗粒流化床内聚团尺寸分布[J]. 化学反应工程与工艺, 2016, 32(5): 445-454.
|
|
KE Xiwei, LIU Daoyin, YAN Ke, et al. Prediction of the agglomerates size distribution in the nanoparticle fluidized bed based on dynamic equilibrium[J]. Chemical Reaction Engineering and Technology, 2016, 32(5): 445-454.
|