Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6133-6143.DOI: 10.16085/j.issn.1000-6613.2024-1671
• Chemical processes and equipment • Previous Articles
LI Yahui(
), LIU Taoran, ZHU Ruisong, CAO Jing, LIU Minghui, LI Yingwen, HU Xuesheng(
), GAO Fei
Received:2024-10-17
Revised:2024-11-21
Online:2025-12-08
Published:2025-11-25
Contact:
HU Xuesheng
李亚辉(
), 刘陶然, 朱瑞松, 曹靖, 刘铭晖, 李应文, 胡雪生(
), 高飞
通讯作者:
胡雪生
作者简介:李亚辉(1997—),女,博士,研究方向为石油化工绿色分离过程。E-mail:liyahui@petrochina.com.cn。
基金资助:CLC Number:
LI Yahui, LIU Taoran, ZHU Ruisong, CAO Jing, LIU Minghui, LI Yingwen, HU Xuesheng, GAO Fei. Research progress on preparation of high purity lithium carbonate through hydrogenation-decomposition technology[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6133-6143.
李亚辉, 刘陶然, 朱瑞松, 曹靖, 刘铭晖, 李应文, 胡雪生, 高飞. 氢化热解法制备高纯碳酸锂的研究进展[J]. 化工进展, 2025, 44(11): 6133-6143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1671
| 方法名称 | 方法描述 | 方法评价 |
|---|---|---|
| Zintl-Harder-Dauth法 | 将粗碳酸锂溶于醋酸中,以(NH4)2C2O4沉淀Ca2+,以Ba(OH)2沉淀Mg2+,再以H2SO4除去Ba2+,所得混合液经过滤干燥后灼热除去铵盐,剩余固体溶于盐酸后碳化得到精制Li2CO3[ | 该法需要投加大量化学试剂且伴产固废,增加了固废处置的费用,环境友好性差 |
| 苛化法 | 向粗碳酸锂浆料中加入精制石灰乳,将Ca2+、Mg2+等杂质沉淀后过滤去除,碳化 | 收率较低、产生固废 |
| 电解法 | 以粗碳酸锂氢化或酸溶后的溶液为阳极液,LiOH溶液为阴极液,两者间以离子选择性渗透膜隔开,电解 | 所需膜材料价格昂贵,工业应用前景较差 |
| 重结晶法 | 利用碳酸锂在水中的溶解度随温度的升高而降低、大部分杂质溶解度随温度升高而增大的差异,通过调控温度,反复进行溶解-结晶过程提升产品纯度 | 该方法对产品纯度的提升程度非常有限,且由于碳酸锂具有一定的水溶性,收率普遍低于75%[ |
| 氢化热解法 | 以粗碳酸锂料浆为原料,通入CO2将Li2CO3氢化,使微溶的Li2CO3转变为可溶性的LiHCO3,将杂质去除后升温热解制备高纯碳酸锂 | 流程简单,CO2的利用和回收是关键问题,应用前景广阔 |
| 方法名称 | 方法描述 | 方法评价 |
|---|---|---|
| Zintl-Harder-Dauth法 | 将粗碳酸锂溶于醋酸中,以(NH4)2C2O4沉淀Ca2+,以Ba(OH)2沉淀Mg2+,再以H2SO4除去Ba2+,所得混合液经过滤干燥后灼热除去铵盐,剩余固体溶于盐酸后碳化得到精制Li2CO3[ | 该法需要投加大量化学试剂且伴产固废,增加了固废处置的费用,环境友好性差 |
| 苛化法 | 向粗碳酸锂浆料中加入精制石灰乳,将Ca2+、Mg2+等杂质沉淀后过滤去除,碳化 | 收率较低、产生固废 |
| 电解法 | 以粗碳酸锂氢化或酸溶后的溶液为阳极液,LiOH溶液为阴极液,两者间以离子选择性渗透膜隔开,电解 | 所需膜材料价格昂贵,工业应用前景较差 |
| 重结晶法 | 利用碳酸锂在水中的溶解度随温度的升高而降低、大部分杂质溶解度随温度升高而增大的差异,通过调控温度,反复进行溶解-结晶过程提升产品纯度 | 该方法对产品纯度的提升程度非常有限,且由于碳酸锂具有一定的水溶性,收率普遍低于75%[ |
| 氢化热解法 | 以粗碳酸锂料浆为原料,通入CO2将Li2CO3氢化,使微溶的Li2CO3转变为可溶性的LiHCO3,将杂质去除后升温热解制备高纯碳酸锂 | 流程简单,CO2的利用和回收是关键问题,应用前景广阔 |
| 序号 | 氢化时间/min | 氢化温度/℃ | 液固比/mL·g-1 | pH | CO2流速/L·min-1 | 搅拌转速/r·min-1 | 有无树脂纯化 | 产品纯度/% | 单级收率/% | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 60 | — | 30 | — | 3.0 | 600 | 无 | 99.64 | — | [ |
| 2 | 80 | — | >23 | 7.6 | — | — | 无 | — | — | [ |
| 3 | 60 | 20 | 25 | — | 4.0 | — | 无 | ≥99.5 | >74 | [ |
| 4 | 120 | 25 | 25 | — | — | 400 | 无 | 99.6 | 70 | [ |
| 5 | 120~180 | 30~40 | — | — | — | — | 有 | 99.991 | — | [ |
| 6 | — | 27.5 | — | — | — | — | 有 | 99.9 | 87.6 | [ |
| 7 | 120 | 25 | — | — | 1.0 | 400 | 有 | 99.99 | 84.13 | [ |
| 8 | 150 | 20 | 20 | — | 1.0 | — | 无 | ≥99 | >75 | [ |
| 9 | 50 | 20 | 40 | — | 5.0 | — | 无 | 99.70 | 74.5 | [ |
| 10 | 50 | 20 | 25 | — | 1.0 | 300 | 无 | 99.80 | 71.92 | [ |
| 序号 | 氢化时间/min | 氢化温度/℃ | 液固比/mL·g-1 | pH | CO2流速/L·min-1 | 搅拌转速/r·min-1 | 有无树脂纯化 | 产品纯度/% | 单级收率/% | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 60 | — | 30 | — | 3.0 | 600 | 无 | 99.64 | — | [ |
| 2 | 80 | — | >23 | 7.6 | — | — | 无 | — | — | [ |
| 3 | 60 | 20 | 25 | — | 4.0 | — | 无 | ≥99.5 | >74 | [ |
| 4 | 120 | 25 | 25 | — | — | 400 | 无 | 99.6 | 70 | [ |
| 5 | 120~180 | 30~40 | — | — | — | — | 有 | 99.991 | — | [ |
| 6 | — | 27.5 | — | — | — | — | 有 | 99.9 | 87.6 | [ |
| 7 | 120 | 25 | — | — | 1.0 | 400 | 有 | 99.99 | 84.13 | [ |
| 8 | 150 | 20 | 20 | — | 1.0 | — | 无 | ≥99 | >75 | [ |
| 9 | 50 | 20 | 40 | — | 5.0 | — | 无 | 99.70 | 74.5 | [ |
| 10 | 50 | 20 | 25 | — | 1.0 | 300 | 无 | 99.80 | 71.92 | [ |
| 名称 | 类型 | 官能团 | 颗粒尺寸/mm | 交换容量 | 参考文献 |
|---|---|---|---|---|---|
| TOKEM 308 | 强酸性磺酸阳离子交换 | —SO3H | 0.2~0.3 | 1.9mg/cm3 | [ |
| TOKEM 200 | 弱酸性羧酸阳离子交换 | —COOH | 0.3~1.6 | 4.3mg/cm3 | [ |
| Purolite S930 | 亚氨基羧基阳离子交换剂 | —N(CH2COOH)2 | 0.4~1.0 | 1.5mg/cm3 | [ |
| Amberlite IRC 748 | 亚氨基羧基阳离子交换剂 | —N(CH2COOH)2 | 0.5~0.65 | ≥1.35mg/cm3 | [ |
| AXIONIT 3S | 亚氨基羧基阳离子交换剂 | —N(CH2COOH)2 | 0.3~0.8 | 1.3~1.4mg/cm3 | [ |
| D412 | — | — | — | 0.014mg/cm3(以Ca计) | [ |
| Dowex G26 | 强酸性阳离子交换树脂 | — | — | 80mg/g(吸附容量) | [ |
| Amberlite IRC 747 | 螯合树脂 | —CH2NHCH2PO3Na2 | 0.52~0.66 | ≥1.75×10-3mg/cm3(以Na计) | [ |
| AG 50W-X8 | 磺化聚苯乙烯树脂 | —SO3H | — | — | [ |
| 名称 | 类型 | 官能团 | 颗粒尺寸/mm | 交换容量 | 参考文献 |
|---|---|---|---|---|---|
| TOKEM 308 | 强酸性磺酸阳离子交换 | —SO3H | 0.2~0.3 | 1.9mg/cm3 | [ |
| TOKEM 200 | 弱酸性羧酸阳离子交换 | —COOH | 0.3~1.6 | 4.3mg/cm3 | [ |
| Purolite S930 | 亚氨基羧基阳离子交换剂 | —N(CH2COOH)2 | 0.4~1.0 | 1.5mg/cm3 | [ |
| Amberlite IRC 748 | 亚氨基羧基阳离子交换剂 | —N(CH2COOH)2 | 0.5~0.65 | ≥1.35mg/cm3 | [ |
| AXIONIT 3S | 亚氨基羧基阳离子交换剂 | —N(CH2COOH)2 | 0.3~0.8 | 1.3~1.4mg/cm3 | [ |
| D412 | — | — | — | 0.014mg/cm3(以Ca计) | [ |
| Dowex G26 | 强酸性阳离子交换树脂 | — | — | 80mg/g(吸附容量) | [ |
| Amberlite IRC 747 | 螯合树脂 | —CH2NHCH2PO3Na2 | 0.52~0.66 | ≥1.75×10-3mg/cm3(以Na计) | [ |
| AG 50W-X8 | 磺化聚苯乙烯树脂 | —SO3H | — | — | [ |
| 初始LiHCO3溶液浓度 | 热解温度/°C | 搅拌速率/r·min-1 | 热解时间/min | 参考文献 |
|---|---|---|---|---|
| 6.05g/100g H2O | 90 | 400 | 60 | [ |
| >18g/L | 90 | — | 60~80 | [ |
| 6.05g/100g H2O(水浴) | 90 | 400 | — | [ |
| 6.80g/100g H2O(微波) | 90 | 400 | — | [ |
| — | 90 | 400 | — | [ |
| 初始LiHCO3溶液浓度 | 热解温度/°C | 搅拌速率/r·min-1 | 热解时间/min | 参考文献 |
|---|---|---|---|---|
| 6.05g/100g H2O | 90 | 400 | 60 | [ |
| >18g/L | 90 | — | 60~80 | [ |
| 6.05g/100g H2O(水浴) | 90 | 400 | — | [ |
| 6.80g/100g H2O(微波) | 90 | 400 | — | [ |
| — | 90 | 400 | — | [ |
| [47] | 吴鉴, 戴永年, 姚耀春. 氢化条件对碳酸锂提纯的影响[J]. 材料导报, 2011, 25(14): 82-84, 102. |
| WU Jian, DAI Yongnian, YAO Yaochun. Effect of carbonation conditions on the purification of lithium carbonate[J]. Materials Review, 2011, 25(14): 82-84, 102. | |
| [48] | 陈志文, 吴宇鹏, 刘雅婷, 等. 一种碳酸锂的纯化方法、碳酸锂: CN117865191A[P]. 2024-04-12. |
| CHEN Zhiwen, WU Yupeng, LIU Yating, et al. Purification method of lithium carbonate and lithium carbonate: CN117865191A[P]. 2024-04-12. | |
| [49] | WU Jian, YAO Yaochun, DAI Yongnian, et al. Effect of cycles and ion-exchange on the purification of lithium carbonate[J]. Advanced Materials Research, 2012, 443/444: 594-600. |
| [50] | MILYUTIN V V, NEKRASOVA N A, RUDSKIKH V V, et al. Preparation of high-purity lithium carbonate using complexing ion-exchange resins[J]. Russian Journal of Applied Chemistry, 2020, 93(4): 549-553. |
| [51] | 张云河, 许开华. 脉冲式氢化工业级碳酸锂制备电池级碳酸锂的方法: CN106365182A[P]. 2017-02-01. |
| ZHANG Yunhe, XU Kaihua. Method for preparing battery grade lithium carbonate by using impulse type hydrogenated industrial grade lithium carbonate: CN106365182A[P]. 2017-02-01. | |
| [52] | 杜国山, 汪德华, 杨永亮, 等. 碳酸锂碳酸化-热析系统研究及工业应用[J]. 有色设备, 2021, 35(2): 45-48. |
| DU Guoshan, WANG Dehua, YANG Yongliang, et al. Research and industrial application of Li2CO3 carbonation-crystallization system[J]. Nonferrous Metallurgical Equipment, 2021, 35(2): 45-48. | |
| [53] | 许志中, 陶箴奇, 张志强, 等. 碳酸氢锂热分解结晶过程的研究[J]. 中小企业管理与科技(下旬刊), 2016(11): 181-183. |
| XU Zhizhong, TAO Zhenqi, ZHANG Zhiqiang, et al. Study on thermal decomposition and crystallization process of lithium bicarbonate[J]. Management & Technology of SME, 2016(11): 181-183. | |
| [54] | YI Wentao, YAN Chunyan, MA Peihua. Crystallization kinetics of Li2CO3 from LiHCO3 solutions[J]. Journal of Crystal Growth, 2010, 312(16/17): 2345-2350. |
| [55] | SUN Yuzhu, SONG Xingfu, WANG Jin, et al. Preparation of lithium carbonate hollow spheres by spray pyrolysis[J]. Crystal Research and Technology, 2011, 46(2): 173-177. |
| [56] | 中华人民共和国工业和信息化部. 高纯碳酸锂: [S]. 北京: 冶金工业出版社, 2022. |
| Ministry of Industry and Information of the People’s Republic of China. High purity lithium carbonate: [S]. Beijing: Metallurgical Industry Press, 2022. | |
| [57] | WANG Shen, PEI Xiaokang, LUO Yong, et al. Preparation of lithium carbonate by microwave assisted pyrolysis[J]. Chinese Journal of Chemical Engineering, 2022, 52: 146-153. |
| [58] | KUROTANI Masahiro, MIYASAKA Etsuko, EBIHARA Satomi, et al. Effect of ultrasonic irradiation on the behavior of primary nucleation of amino acids in supersaturated solutions[J]. Journal of Crystal Growth, 2009, 311(9): 2714-2721. |
| [59] | Martijn WAGTERVELD R, MIEDEMA Henk, WITKAMP Geert-Jan. Effect of ultrasonic treatment on early growth during CaCO3 precipitation[J]. Crystal Growth and Design, 2012, 12(9): 4403-4410. |
| [60] | TAN Jianghao, WANG Qi, LIN Yanjun, et al. Direct preparation of battery-grade lithium carbonate via a nucleation-crystallization isolating process intensified by a micro-liquid film reactor[J]. The Canadian Journal of Chemical Engineering, 2023, 101(2): 870-882. |
| [61] | LIU Wei, CHU Guangwen, LI Shaochen, et al. Preparation of lithium carbonate by thermal decomposition in a rotating packed bed reactor[J]. Chemical Engineering Journal, 2019, 377: 119929. |
| [62] | 王人杰, 李明兴, 李新义. 基于氢化分解法的粗碳酸锂制备电池级碳酸锂工艺研究[J]. 化工设计通讯, 2020, 46(7): 140-142. |
| WANG Renjie, LI Mingxing, LI Xinyi. Preparation of battery grade lithium carbonate from crude lithium carbonate by hydrogenolysis[J]. Chemical Engineering Design Communications, 2020, 46(7): 140-142. | |
| [63] | CAI Wei, CHEN Ruosong, YANG Yurong, et al. Removal of SO4 2- from Li2CO3 by recrystallization in Na2CO3 solution[J]. Crystals, 2018, 8(1): 19. |
| [1] | MARTIN Gunther, RENTSCH Lars, Michael HÖCK, et al. Lithium market research—Global supply, future demand and price development[J]. Energy Storage Materials, 2017, 6: 171-179. |
| [2] | LI Zehong, WANG Chunying, CHEN Jian. Supply and demand of lithium in China based on dynamic material flow analysis[J]. Renewable and Sustainable Energy Reviews, 2024, 203: 114786. |
| [3] | ANDRADE Mariana N, OLIVEIRA Glaucia C, COTRIM Marycel E B, et al. Use of the ion exchange technique for purification of lithium carbonate for nuclear industry[C]. International Nuclear Atlantic Conference, 2021. |
| [4] | APRILIANTO Doni Riski, PERDANA Indra, ROCHMADI, et al. Effect of sulfate and carbonate ions on lithium carbonate precipitation from a low concentration lithium containing solution[J]. Industrial & Engineering Chemistry Research, 2024, 63(11): 4918-4933. |
| [5] | 伊文涛, 闫春燕, 戴志锋, 等. 高纯碳酸锂的应用与制备方法评述[J]. 化工矿物与加工, 2005, 34(11): 5-8. |
| YI Wentao, YAN Chunyan, DAI Zhifeng, et al. Review of the application and preparation of high purity lithium carbonate[J]. Industrial Minerals & Processing, 2005, 34(11): 5-8. | |
| [6] | KIM Sung-hwan, YOON Hongsik, MIN Taijin, et al. Carbon dioxide utilization in lithium carbonate precipitation: A short review[J]. Environmental Engineering Research, 2024, 29(3): 230553. |
| [7] | LEI Chong, LANG Jialiang, WANG Kuangyu, et al. Extraction of LiCl from low-purity chlorides through solid electrolyte towards high-purity Li2CO3 production[J]. ChemSusChem, 2024, 17(8): e202301406. |
| [8] | 朱瑞松, 曹靖, 刘陶然, 等. 全球非常规卤水的提锂技术及产业化研究进展[J]. 无机盐工业, 2023, 55(11): 1-11. |
| ZHU Ruisong, CAO Jing, LIU Taoran, et al. Research progress of lithium extraction technology and industrialization of unconventional brines in global[J]. Inorganic Chemicals Industry, 2023, 55(11): 1-11. | |
| [9] | 文佳豪, 代鸿章, 陈翠华, 等. 中国锂资源供需现状与资源保障程度研究[J]. 地质通报, 2025, 44(S1): 245-258. |
| WEN Jiahao, DAI Hongzhang, CHEN Cuihua, et al. Research on the supply and demand status and resource guarantee degree of lithium in China[J]. Geological Bulletin of China, 2025, 44(S1): 245-258. | |
| [10] | ZHAO Chunlong, ZHANG Yanling, CAO Hongbin, et al. Lithium carbonate recovery from lithium-containing solution by ultrasound assisted precipitation[J]. Ultrasonics Sonochemistry, 2019, 52: 484-492. |
| [11] | SHIN Junho, JEONG Jae-Min, LEE Jin Bae, et al. Preparation of lithium carbonate from waste lithium solution through precipitation and wet conversion methods[J]. Hydrometallurgy, 2022, 210: 105863. |
| [12] | GILEVA Olga, ARYAL Pabitra, CHOE JunSeok, et al. Purification of lithium carbonate from radioactive contaminants using a MnO2-based inorganic sorbent[J]. Inorganics, 2023, 11(10): 410. |
| [13] | LINNEEN Nicholas, BHAVE Ramesh, WOERNER Douglas. Purification of industrial grade lithium chloride for the recovery of high purity battery grade lithium carbonate[J]. Separation and Purification Technology, 2019, 214: 168-173. |
| [14] | 戴立新. 超纯(5N)碳酸锂的研制及其应用前景[J]. 矿业研究与开发, 2003(S1): 192-193. |
| DAI Lixin. Development and application prospect of ultra-purified (5N) lithium carbonate [J]. Mining Research and Development, 2003(S1): 192-193. | |
| [15] | ZHENG Feifei, LIU Hong, LIU Duo, et al. Hydrothermal and wet-chemical synthesis of pure LiTaO3 powders by using commercial tantalum hydroxide as starting material[J]. Journal of Alloys and Compounds, 2009, 477(1/2): 688-691. |
| [16] | MASLOBOEVA S M, EFREMOV I N, BIRYUKOVA I V, et al. Growth and characterization of a boron-doped lithium niobate single crystal[J]. Inorganic Materials, 2020, 56(11): 1147-1152. |
| [17] | CHOE Gogwon, KIM Hyungsub, KWON Jaesub, et al. Re-evaluation of battery-grade lithium purity toward sustainable batteries[J]. Nature Communications, 2024, 15: 1185. |
| [18] | LIU Zixi. Study on preparation technology of LiNbO3 polycrystal powder[J]. Rare Metals & Cemented Carbides, 2022, 50(5): 66-69. |
| [19] | CHEN Ning, ZHOU E, DUAN Dongping, et al. Mechanochemistry synthesis of high purity lithium carbonate[J]. Korean Journal of Chemical Engineering, 2017, 34(10): 2748-2755. |
| [20] | YI Wentao, YAN Chunyan, MA Peihua. Removal of calcium and magnesium from LiHCO3 solutions for preparation of high-purity Li2CO3 by ion-exchange resin[J]. Desalination, 2009, 249(2): 729-735. |
| [21] | 戴志锋, 肖小玲, 李法强, 等. 高纯碳酸锂的制取方法探讨[J]. 盐湖研究, 2005, 13(2): 53-59. |
| DAI Zhifeng, XIAO Xiaoling, LI Faqiang, et al. Discussion on methods for the preparation for high-purity lithium carbonate[J]. Journal of Salt Lake Research, 2005, 13(2): 53-59. | |
| [22] | 米泽华. 高纯碳酸锂的制取方法探讨[J]. 新疆有色金属, 2000, 23(2): 27-29. |
| MI Zehua. Discussion on preparation method of high purity lithium carbonate[J]. XINJIANG YOUSE JINSHU, 2000, 23(2): 27-29. | |
| [23] | TORRES Walter R, DÍAZ NIETO César H, Antonin PRÉVOTEAU, et al. Lithium carbonate recovery from brines using membrane electrolysis[J]. Journal of Membrane Science, 2020, 615: 118416. |
| [24] | 赵春龙, 孙峙, 郑晓洪, 等. 碳酸锂的制备及其纯化过程的研究进展[J]. 过程工程学报, 2018, 18(1): 20-28. |
| ZHAO Chunlong, SUN Zhi, ZHENG Xiaohong, et al. Research progress of lithium carbonate preparation and purification process[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 20-28. | |
| [25] | 曹靖, 朱瑞松, 李应文, 等. 富锂卤水制备电池级碳酸锂研究进展[J]. 现代化工, 2024, 44(1): 68-73. |
| CAO Jing, ZHU Ruisong, LI Yingwen, et al. Research progress in preparation of battery-grade lithium carbonate from lithium-rich brine[J]. Modern Chemical Industry, 2024, 44(1): 68-73. | |
| [26] | 戴江洪, 王宏岩, 李平. 高纯碳酸锂制备研究进展[J]. 中国有色冶金, 2020, 49(1): 49-53. |
| DAI Jianghong, WANG Hongyan, LI Ping. Research development of preparation of high purity lithium carbonate[J]. China Nonferrous Metallurgy, 2020, 49(1): 49-53. | |
| [27] | LI Haodu, ZHANG Jie, DAI Lin, et al. Process intensification for the synthesis and purification of battery-grade Li2CO3 with microfluidics[J]. Particuology, 2024, 90: 106-117. |
| [28] | LIU Dongfu, ZHAO Zhongwei, XU Wenhua, et al. A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation[J]. Desalination, 2021, 519: 115302. |
| [29] | ZHOU Ming. Preparation of battery grade Li2CO3 from defective product by the carbonation-decomposition method[J]. Crystal Research and Technology, 2023, 58(1): 2200112. |
| [30] | WANG Jinliang, HU Huazhou. Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate[J]. Journal of Materials Research and Technology, 2020, 9(5): 9498-9505. |
| [31] | 梁鑫, 洪侃, 赖耀斌, 等. 正交试验法优化碳酸锂提纯条件研究[J]. 中国资源综合利用, 2020, 38(8): 15-18. |
| LIANG Xin, HONG Kan, LAI Yaobin, et al. Study on optimization for purification technique of lithium carbonate by orthogonal experiment[J]. China Resources Comprehensive Utilization, 2020, 38(8): 15-18. | |
| [32] | DODDS W S, STUTZMAN L F, SOLLAMI B J. Carbon dioxide solubility in water[J]. Industrial & Engineering Chemistry Chemical & Engineering Data Series, 1956, 1(1): 92-95. |
| [33] | 张志月, 吴会敏, 李鹏武, 等. 碳酸锂氢化工段工艺技术研究[J]. 山东化工, 2018, 47(22): 18-20. |
| ZHANG Zhiyue, WU Huimin, LI Pengwu, et al. Research on hydrogen chemical section of lithium carbonate purification[J]. Shandong Chemical Industry, 2018, 47(22): 18-20. | |
| [34] | 孙哲. 89%级碳酸锂转电池级碳酸锂氢化工艺研究[J]. 新疆有色金属, 2016, 39(5): 82-83. |
| SUN Zhe. Study on hydrogenation process of 89% grade lithium carbonate to battery grade lithium carbonate[J]. XINJIANG YOUSE JINSHU, 2016, 39(5): 82-83. | |
| [35] | XU Zhengguo, SUN Shuying. Preparation of battery-grade lithium carbonate with lithium-containing desorption solution[J]. Metals, 2021, 11(9): 1490. |
| [36] | 周启立, 王莫飞. 碳化法制备高纯碳酸锂[J]. 无机盐工业, 2012, 44(7): 36-37, 55. |
| ZHOU Qili, WANG Mofei. Preparation of high purity lithium carbonate by carbonization method[J]. Inorganic Chemicals Industry, 2012, 44(7): 36-37, 55. | |
| [37] | CHEN Weisheng, LEE Chenghan, Hsing-Jung HO. Purification of lithium carbonate from sulphate solutions through hydrogenation using the dowex G26 resin[J]. Applied Sciences, 2018, 8(11): 2252. |
| [38] | 李燕茹, 朱亮, 袁建军, 等. 粗级碳酸锂提纯工艺过程研究[J]. 无机盐工业, 2013, 45(8): 15-17. |
| LI Yanru, ZHU Liang, YUAN Jianjun, et al. Research on purifying process of coarse lithium carbonate[J]. Inorganic Chemicals Industry, 2013, 45(8): 15-17. | |
| [39] | 郭贤慧, 王永勤, 王建萍, 等. 碳化分解法制备电池级碳酸锂的工艺研究[J]. 无机盐工业, 2019, 51(1): 50-52. |
| GUO Xianhui, WANG Yongqin, WANG Jianping, et al. Study on preparation process of battery-grade lithium carbonate by carbonation-decomposition method[J]. Inorganic Chemicals Industry, 2019, 51(1): 50-52. | |
| [40] | 赵峰, 汪胜东, 郭纵, 等. 碳化分解法制备电池级碳酸锂[J]. 有色金属工程, 2025, 15(2): 255-260. |
| ZHAO Feng, WANG Shengdong, GUO Zong, et al. Preparation of battery grade Li2CO3 by carbonation and decomposition[J]. Nonferrous Metals Engineering, 2025, 15(2): 255-260. | |
| [41] | 伊文涛, 闫春燕, 李法强, 等. 碳酸锂碳化反应过程分析与机理探讨[J]. 化工矿物与加工, 2006, 35(2): 31-34. |
| YI Wentao, YAN Chunyan, LI Faqiang, et al. Process analysis and mechanism discussion of carbonation reaction of lithium carbonate[J]. Industrial Minerals & Processing, 2006, 35(2): 31-34. | |
| [42] | 殷海青, 马祎明, 万旭兴, 等. 碳酸锂气液固三相反应结晶过程研究[J]. 化工学报, 2022, 73(3): 1207-1220. |
| YIN Haiqing, MA Yiming, WAN Xuxing, et al. Research of lithium carbonate three-phase reactive crystallization process [J]. CIESC Journal, 2022, 73(3): 1207-1220. | |
| [43] | 孙玉柱. 碳酸锂结晶过程研究[D]. 上海: 华东理工大学, 2010. |
| SUN Yuzhu. Study on the crystallization of lithium carbonate[D]. Shanghai: East China University of Science and Technology, 2010. | |
| [44] | 兰清泉, 赵金宇, 王瑞琦, 等. 一种制备高纯度纳米级碳酸锂的方法、系统及设备: CN117303414A[P]. 2023-12-29. |
| LAN Qingquan, ZHAO Jinyu, WANG Ruiqi, et al. A method, system and equipment for preparing high-purity nanoscale lithium carbonate: CN117303414A [P]. 2023-12-29. | |
| [45] | 钟发平, 杨建广, 张艳, 等. 一种由粗碳酸锂制备高纯碳酸锂的方法: CN116903005A[P]. 2023-10-20. |
| ZHONG Faping, YANG Jianguang, ZHANG Yan, et al. A method for preparing high-purity lithium carbonate from crude lithium carbonate: CN116903005A[P]. 2023-10-20. | |
| [46] | ZHAO Quanfeng, WU Jian, YAO Yaochun. Effect of carbonation temperature on the purification of lithium carbonate[J]. Advanced Materials Research, 2013, 846/847: 1911-1914. |
| [64] | 李芯, 袁波, 易美桂. 水热法脱除碳酸锂中微量硫杂质的研究[J]. 无机盐工业, 2019, 51(11): 28-30, 53. |
| LI Xin, YUAN Bo, YI Meigui. Study on removal of trace sulfur impurities from lithium carbonate by hydrothermal method[J]. Inorganic Chemicals Industry, 2019, 51(11): 28-30, 53. |
| [1] | ZHANG Yuxin, DENG Ziyang, WANG Can, ZENG Dan. Recent advances of extraction technology and application of fucoxanthin [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 422-433. |
| [2] | LIU Ying, BAO Cheng, ZHANG Xinxin. Modified copper-carrying activated carbon for hydrogen purification [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 413-421. |
| [3] | ZOU Xianzhi, LIAO Yalong, YANG Shuangyu. Research progress on purification and impurity removal in copper electrolyte [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 492-503. |
| [4] | LIU Jianhua, YUAN Zhenjun, CHANG Xin, ZHAO Xizhe, WAN Ye, YU Xuegong, YANG Deren. Application and technological progress of silicon-based precursors in advanced integrated circuit manufacturing [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5255-5264. |
| [5] | WANG Xiaoguang, DONG Qing, LANG Wenli, HONG Xiangxin, HUANG Zhenxiang, TAN Fengyu, LEI Yizhu, YU Ziyi. Progress on emission reduction and resource utilization of ultra-low concentration methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5363-5376. |
| [6] | XU Ruting, ZHAO Jian, SUN Kang, LU Xincheng, JIANG Jianchun, SU Zhonggao, LIU Junli, CHEN Zibiao, SU Zihan. Modification of activated carbon and its purification performance for simulated waste lubricating oil [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4022-4031. |
| [7] | FU Yu, LI Xiaoyu, WU Yue, TAO Chunhui, DUAN Ran, ZHANG Wenxiang, MA Heping. Removal of trace NF3 impurities from electronic grade CF4 by adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3570-3578. |
| [8] | DING Wei, BAO Shenxu, XIN Chunfu, WANG Zhanhao, ZHANG Hongwei, KUANG Buxiao. Research progress on preparation and purification technology of wet-process phosphoric acid from middle-low-grade phosphorus ore [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2274-2284. |
| [9] | CAI Ruiyun, JIAO Rui, SUN Hanxue, LI An. Design, preparation and application of asymmetrically wettable Janus organic porous membrane [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2057-2067. |
| [10] | JIANG Yang, CHEN Wei, ZHOU Kanggen, LI Hongbo, LAI Qizhou, NONG Runqiao, PENG Changhong. Optimization and pilot testing of Al/Fe removal processes for acid leachate from spent ternary lithium-ion battery powders [J]. Chemical Industry and Engineering Progress, 2025, 44(10): 6016-6022. |
| [11] | LIU Chuanlei, CHEN Yuxiang, GUO Guanchu, ZHAO Qiyue, JIANG Hao, SUN Hui, SHEN Benxian. Designing novel alkoxypropylamine solvents for removing mercaptans from high-acidity natural gas [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 184-191. |
| [12] | ZHANG Lei, DU Hongying, FENG Wenhao, GUO Junkang. Optimization of interfacial solar photothermal evaporation system based on two-dimensional photothermal materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4571-4586. |
| [13] | CHENG Chunhui, MING Shujun, PANG Lei, TIAN Shidong, LI Kelun, LI Tao. Developments in solid porous materials for methane enrichment in coalbed gas [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6215-6232. |
| [14] | SHANG Gaoyuan, YU Jinpeng, CUI Kai, GUO Kun. Impact of cathode potentials on methane production from high-concentration potato starch wastewater in electro-fermentation systems [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6533-6542. |
| [15] | SU Shikun, LIU Tang, JIN Ye, ZHENG Jinyu. Advances of adsorption materials for hydrogen purification [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5612-5632. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |