Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6215-6232.DOI: 10.16085/j.issn.1000-6613.2023-1763
• Materials science and technology • Previous Articles
CHENG Chunhui1(), MING Shujun2, PANG Lei3, TIAN Shidong4, LI Kelun4, LI Tao1()
Received:
2023-10-09
Revised:
2023-12-18
Online:
2024-12-07
Published:
2024-11-15
Contact:
LI Tao
程春晖1(), 明淑君2, 庞磊3, 田士东4, 李克伦4, 李涛1()
通讯作者:
李涛
作者简介:
程春晖(1995—),男,博士研究生,研究方向为固体多孔吸附剂材料的合成与改性。E-mail:chunhuicheng@hust.edu.cn。
基金资助:
CLC Number:
CHENG Chunhui, MING Shujun, PANG Lei, TIAN Shidong, LI Kelun, LI Tao. Developments in solid porous materials for methane enrichment in coalbed gas[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6215-6232.
程春晖, 明淑君, 庞磊, 田士东, 李克伦, 李涛. 基于煤层气甲烷富集的固体多孔材料研究进展[J]. 化工进展, 2024, 43(11): 6215-6232.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1763
技术 | 变压吸附分离 | 低温深冷分离 | 膜分离 | 水合物基分离 |
---|---|---|---|---|
机理 | 吸附选择性 | 沸点不同 | 渗透率差异 | 甲烷水合物结晶 |
相变 | 无 | 有 | 无 | 有 |
压力 | PSA需要高压;VPSA仅需常压 | 高压 | 高压 | 高压 |
优点 | 高安全性、长寿命、高操作灵活性、低能耗 | 富集性能好 | 操作灵活性高、能耗低 | 富集性能好 |
缺点 | 一次操作的富集性能有限 | 能耗高、工艺复杂、爆炸风险高 | 选择性低、膜寿命短 | 能耗高、水合物形成速率低、 爆炸风险大 |
发展现状 | 商业化应用 | 局部试验阶段 | 实验室开发阶段 | 实验室开发阶段 |
潜在问题 | 低产出投入比 | 高成本和爆炸风险 | 放大问题、膜耐久性 | 放大问题、技术不成熟 |
技术 | 变压吸附分离 | 低温深冷分离 | 膜分离 | 水合物基分离 |
---|---|---|---|---|
机理 | 吸附选择性 | 沸点不同 | 渗透率差异 | 甲烷水合物结晶 |
相变 | 无 | 有 | 无 | 有 |
压力 | PSA需要高压;VPSA仅需常压 | 高压 | 高压 | 高压 |
优点 | 高安全性、长寿命、高操作灵活性、低能耗 | 富集性能好 | 操作灵活性高、能耗低 | 富集性能好 |
缺点 | 一次操作的富集性能有限 | 能耗高、工艺复杂、爆炸风险高 | 选择性低、膜寿命短 | 能耗高、水合物形成速率低、 爆炸风险大 |
发展现状 | 商业化应用 | 局部试验阶段 | 实验室开发阶段 | 实验室开发阶段 |
潜在问题 | 低产出投入比 | 高成本和爆炸风险 | 放大问题、膜耐久性 | 放大问题、技术不成熟 |
吸附剂类型 | 优点 | 缺点 |
---|---|---|
活性炭 | 成本低廉、比表面积大、易于修饰 | 孔隙分布杂乱、选择性低、机械稳定性差 |
沸石分子筛 | 良好的热和机械稳定性、高的表面积 | 再生能耗高、对水敏感 |
有机聚合物 | 可定制化孔隙结构和化学性质 | 热和机械稳定性差、合成复杂、再生性弱 |
金属有机框架 | 极高的表面积、可定制化孔隙结构和化学性质 | 制造成本高、对水敏感、热和机械稳定性差 |
二氧化硅 | 良好的热稳定性和机械强度 | 吸附量和选择性低 |
碳纳米管 | 高表面积、可调节的化学性质和孔结构 | 制造成本高、分散性和加工性能需优化 |
吸附剂类型 | 优点 | 缺点 |
---|---|---|
活性炭 | 成本低廉、比表面积大、易于修饰 | 孔隙分布杂乱、选择性低、机械稳定性差 |
沸石分子筛 | 良好的热和机械稳定性、高的表面积 | 再生能耗高、对水敏感 |
有机聚合物 | 可定制化孔隙结构和化学性质 | 热和机械稳定性差、合成复杂、再生性弱 |
金属有机框架 | 极高的表面积、可定制化孔隙结构和化学性质 | 制造成本高、对水敏感、热和机械稳定性差 |
二氧化硅 | 良好的热稳定性和机械强度 | 吸附量和选择性低 |
碳纳米管 | 高表面积、可调节的化学性质和孔结构 | 制造成本高、分散性和加工性能需优化 |
1 | 中华人民共和国自然资源部. 中国矿产资源报告-2022[M]. 北京: 地质出版社, 2022. |
Ministry of Natural Resources of the People’s Republic of China. China mineral resources-2022[M]. Beijing: Geological Publishing House, 2022. | |
2 | LU Yiyu, ZHANG Huidong, ZHOU Zhe, et al. Current status and effective suggestions for efficient exploitation of coalbed methane in China: A review[J]. Energy & Fuels, 2021, 35(11): 9102-9123. |
3 | MILLER Scot M, MICHALAK Anna M, DETMERS Robert G, et al. China’s coal mine methane regulations have not curbed growing emissions[J]. Nature Communications, 2019, 10: 303. |
4 | NANDANWAR Sachin U, CORBIN David R, SHIFLETT Mark B. A review of porous adsorbents for the separation of nitrogen from natural gas[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13355-13369. |
5 | YANG Zhuxian, HUSSAIN Mian Zahid, Pablo MARÍN, et al. Enrichment of low concentration methane: An overview of ventilation air methane[J]. Journal of Materials Chemistry A, 2022, 10(12): 6397-6413. |
6 | WANG Xinxin, ZHOU Fubao, LING Yihan, et al. Overview and outlook on utilization technologies of low-concentration coal mine methane[J]. Energy & Fuels, 2021, 35(19): 15398-15423. |
7 | SU Shi, BEATH Andrew, GUO Hua, et al. An assessment of mine methane mitigation and utilisation technologies[J]. Progress in Energy and Combustion Science, 2005, 31(2): 123-170. |
8 | HOLMES R I. Mitigating ventilation air methane cost-effectively from a colliery in Australia[J]. Journal of Applied Engineering Sciences, 2016, 6(1): 41-50. |
9 | LI Xiyue, GE Binbin, YAN Jin, et al. Review on hydrate-based CH4 separation from low-concentration coalbed methane in China[J]. Energy & Fuels, 2021, 35(10): 8494-8509. |
10 | QUARANTA Isabella C C, PINHEIRO Larissa S, GONÇALVES Daniel V, et al. Multiscale design of a pressure swing adsorption process for natural gas purification[J]. Adsorption, 2021, 27(7): 1055-1066. |
11 | WIHEEB A D, HELWANI Z, KIM J, et al. Pressure swing adsorption technologies for carbon dioxide capture[J]. Separation & Purification Reviews, 2016, 45(2): 108-121. |
12 | 李云赫, 闵秀博, 余忆玄, 等. 甲烷与氮气吸附分离研究进展[J]. 石油学报(石油加工), 2022, 38(6): 1520-1530. |
LI Yunhe, MIN Xiubo, YU Yixuan, et al. Research progress in adsorption separation of methane and nitrogen[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(6): 1520-1530. | |
13 | David URSUEGUÍA, Eva DÍAZ, Salvador ORDÓÑEZ. Metal-organic frameworks (MOFs) as methane adsorbents: From storage to diluted coal mining streams concentration[J]. Science of the Total Environment, 2021, 790: 148211. |
14 | PALMER J C, LLOBET A, S-H YEON, et al. Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics[J]. Carbon, 2010, 48(4): 1116-1123. |
15 | KHORAMZADEH Elham, MOFARAHI Masoud, LEE Changha. Equilibrium adsorption study of CO2 and N2 on synthesized zeolites 13X, 4A, 5A, and beta[J]. Journal of Chemical & Engineering Data, 2019, 64(12): 5648-5664. |
16 | UGLIENGO P, SODUPE M, MUSSO F, et al. Realistic models of hydroxylated amorphous silica surfaces and MCM-41 mesoporous material simulated by large-scale periodic B3LYP calculations[J]. Advanced Materials, 2008, 20(23): 4579-4583. |
17 | THOMAS Jens M H, TREWIN Abbie. Amorphous PAF-1: Guiding the rational design of ultraporous materials[J]. The Journal of Physical Chemistry C, 2014, 118(34): 19712-19722. |
18 | FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
19 | SIEGELMAN Rebecca L, KIM Eugene J, LONG Jeffrey R. Porous materials for carbon dioxide separations[J]. Nature Materials, 2021, 20(8): 1060-1072. |
20 | BOER Dina G, LANGERAK Jort, PESCARMONA Paolo P. Zeolites as selective adsorbents for CO2 separation[J]. ACS Applied Energy Materials, 2023, 6(5): 2634-2656. |
21 | HEDAYATI Ali, DELICA Beñat Anda, Susana PEREZ-GIL, et al. Evaluation of high-performance adsorbents for separation of CO2 from industrial effluent gases[J]. Greenhouse Gases: Science and Technology, 2023, 13(2): 216-226. |
22 | SHEN Jiaxuan, WANG Xiaodong, CHEN Yani. Adsorbents for adsorption separation of CO2 and CH4: A literature review[J]. The Canadian Journal of Chemical Engineering, 2023, 101(12): 7115-7133. |
23 | LIU Rushuai, SHI Xiaodong, WANG Chengtong, et al. Advances in post-combustion CO2 capture by physical adsorption: From materials innovation to separation practice[J]. ChemSusChem, 2021, 14(6): 1428-1471. |
24 | ZHOU Yan, FU Qiang, SHEN Yuanhui, et al. Upgrade of low-concentration oxygen-bearing coal bed methane by a vacuum pressure swing adsorption process: Performance study and safety analysis[J]. Energy & Fuels, 2016, 30(2): 1496-1509. |
25 | WANG Xinxin, WANG Zujing, WEI Kangwei, et al. Kinetic-separation vacuum swing adsorption for safe and efficient enrichment of low concentration coal mine gas[J]. Separation and Purification Technology, 2022, 299: 121683. |
26 | QIAN Zhiling, YANG Ying, LI Ping, et al. An improved vacuum pressure swing adsorption process with the simulated moving bed operation mode for CH4/N2 separation to produce high-purity methane[J]. Chemical Engineering Journal, 2021, 419: 129657. |
27 | OLAJOSSY Andrzej. Effective recovery of methane from coal mine methane gas by vacuum pressure swing adsorption: A pilot scale case study[J]. Chemical Engineering and Science, 2013, 1(4): 46-54. |
28 | HU Guoping, ZHAO Qinghu, TAO Lefu, et al. Enrichment of low grade CH4 from N2/CH4 mixtures using vacuum swing adsorption with activated carbon[J]. Chemical Engineering Science, 2021, 229: 116152. |
29 | Jun-Seok BAE, SU Shi, YU Xinxiang, et al. Site trials of ventilation air methane enrichment with two-stage vacuum, temperature, and vacuum swing adsorption[J]. Industrial & Engineering Chemistry Research, 2020, 59(35): 15732-15741. |
30 | MADEJSKI P, KAROLINA Chmiel, NAVANEETHAN Subramanian, et al. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies[J]. Energies, 2022, 15(3): 887. |
31 | ZENG Hongxue, QU Xinghong, XU Dong, et al. Porous adsorption materials for carbon dioxide capture in industrial flue gas[J]. Frontiers in Chemistry, 2022, 10: 939701. |
32 | YUSOF S M, TEH L P. Bifunctional materials for CO2 adsorption: Short review[J]. Journal of Chemical Engineering and Industrial Biotechnology, 2021, 7(2): 15-19. |
33 | 佟思琦, 建伟伟, 海秋岩, 等. 多孔固体材料吸附CO2的研究进展[J]. 辽宁石油化工大学学报, 2022, 42(2): 30-37. |
TONG Siqi, JIAN Weiwei, Qiuyan HAI, et al. Research progress of porous solid materials for CO2 adsorption and removal[J]. Journal of Liaoning Petrochemical University, 2022, 42(2): 30-37. | |
34 | SHI Shuo, LIU Yangxian. Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO2 adsorption[J]. Fuel, 2021, 306: 121762. |
35 | Dariusz WAWRZYŃCZAK, Izabela MAJCHRZAK-KUCĘBA, PEVIDA Covadonga, et al. The carbon chain in carbon dioxide industrial utilization technologies: A case study[M]. Boca Raton: CRC Press, 2022. |
36 | Joanna SREŃSCEK-NAZZAL, Karolina KIEŁBASA. Advances in modification of commercial activated carbon for enhancement of CO2 capture[J]. Applied Surface Science, 2019, 494: 137-151. |
37 | WEI Jianwen, LIN Zhifeng, HE Zeyu, et al. Bagasse activated carbon with TETA/TEPA modification and adsorption properties of CO2 [J]. Water, Air, & Soil Pollution, 2017, 228(4): 128. |
38 | LI Yao, LIU Nan, ZHANG Tao, et al. Highly microporous nitrogen-doped carbons from anthracite for effective CO2 capture and CO2/CH4 separation[J]. Energy, 2020, 211: 118561. |
39 | LI Yi, LI Lin, YU Jihong. Applications of zeolites in sustainable chemistry[J]. Chem, 2017, 3(6): 928-949. |
40 | MAGHFIRAH A, ILMI M M, FAJAR A T N, et al. A review on the green synthesis of hierarchically porous zeolite[J]. Materials Today Chemistry, 2020, 17: 100348. |
41 | LIU Qingling, MACE Amber, BACSIK Zoltan, et al. NaKA sorbents with high CO2-over-N2 selectivity and high capacity to adsorb CO2 [J]. Chemical Communications, 2010, 46(25): 4502-4504. |
42 | ZHOU Yu, ZHANG Jianlin, WANG Lei, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving[J]. Science, 2021, 373(6552): 315-320. |
43 | SHANG Jin, LI Gang, SINGH Ranjeet, et al. Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites[J]. Journal of the American Chemical Society, 2012, 134(46): 19246-19253. |
44 | 刘佳奇, 尚华, 唐轩, 等. 分子筛基CH4-N2分离材料的研究进展[J]. 化工进展, 2019, 38(1): 449-456. |
LIU Jiaqi, SHANG Hua, TANG Xuan, et al. Zeolite based materials for CH4-N2 separation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 449-456. | |
45 | KIM Chaehoon, CHO Hae Sung, CHANG Shuai, et al. An ethylenediamine-grafted Y zeolite: A highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation[J]. Energy & Environmental Science, 2016, 9(5): 1803-1811. |
46 | LI Hailian, EDDAOUDI Mohamed, O’KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
47 | BOYD Peter G, CHIDAMBARAM Arunraj, Enrique GARCÍA-DÍEZ, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture[J]. Nature, 2019, 576(7786): 253-256. |
48 | USMAN Muhammad, IQBAL Naseem, NOOR Tayyaba, et al. Advanced strategies in metal-organic frameworks for CO2 capture and separation[J]. The Chemical Record, 2022, 22(7): e202100230. |
49 | LI Jianrong, YU Jiamei, LU Weigang, et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption[J]. Nature Communications, 2013, 4: 1538. |
50 | LI Bin, CHEN Banglin. A flexible metal-organic framework with double interpenetration for highly selective CO2 capture at room temperature[J]. Science China Chemistry, 2016, 59(8): 965-969. |
51 | BRITT David, FURUKAWA Hiroyasu, WANG Bo, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(49): 20637-20640. |
52 | LIN Jianbin, NGUYEN Tai T T, RAMANATHAN Vaidhyanathan, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture[J]. Science, 2021, 374(6574): 1464-1469. |
53 | HAMEDI Homa, KARIMI Iftekhar A, GUNDERSEN Truls. Optimal cryogenic processes for nitrogen rejection from natural gas[J]. Computers & Chemical Engineering, 2018, 112: 101-111. |
54 | HAMEDI Homa. An innovative integrated process for helium and NGL recovery and nitrogen removal[J]. Cryogenics, 2021, 113: 103224. |
55 | LEE Yongseok, Youngsub LIM, LEE Won Bo. Integrated process design and optimization of nitrogen recovery in natural gas processing[J]. Industrial & Engineering Chemistry Research, 2019, 58(4): 1658-1674. |
56 | KENNEDY Dean A, MUJCIN Maja, TRUDEAU Emily, et al. Pure and binary adsorption equilibria of methane and nitrogen on activated carbons, desiccants, and zeolites at different pressures[J]. Journal of Chemical & Engineering Data, 2016, 61(9): 3163-3176 |
57 | TADDEI Marco, PETIT Camille. Engineering metal-organic frameworks for adsorption-based gas separations: From process to atomic scale[J]. Molecular Systems Design & Engineering, 2021, 6(11): 841-875. |
58 | KENNEDY D A, MUJČIN M, ABOU-ZEID C, et al. Cation exchange modification of clinoptilolite-thermodynamic effects on adsorption separations of carbon dioxide, methane, and nitrogen[J]. Microporous and Mesoporous Materials, 2019, 274: 327-341. |
59 | TAGLIABUE Marco, FARRUSSENG David, VALENCIA Susana, et al. Natural gas treating by selective adsorption: Material science and chemical engineering interplay[J]. Chemical Engineering Journal, 2009, 155(3): 553-566. |
60 | PAN Hongyan, ZHAO Jingyun, LIN Qian, et al. Preparation and characterization of activated carbons from bamboo sawdust and its application for CH4 selectivity adsorption from a CH4/N2 system[J]. Energy & Fuels, 2016, 30(12): 10730-10738. |
61 | PAN Hongyan, YI Yun, LIN Qian, et al. Effect of surface chemistry and textural properties of activated carbons for CH4 selective adsorption through low-concentration coal bed methane[J]. Journal of Chemical & Engineering Data, 2016, 61(6): 2120-2127. |
62 | Arash ARAMI-NIYA, RUFFORD Thomas E, ZHU Zhonghua. Activated carbon monoliths with hierarchical pore structure from tar pitch and coal powder for the adsorption of CO2, CH4 and N2 [J]. Carbon, 2016, 103: 115-124. |
63 | YUAN Desheng, ZHENG Yuannan, LI Qingzhao, et al. Effects of pore structure of prepared coal-based activated carbons on CH4 enrichment from low concentration gas by IAST method[J]. Powder Technology, 2018, 333: 377-384. |
64 | QU Donglei, YANG Ying, LU Kai, et al. Microstructure effect of carbon materials on the low-concentration methane adsorption separation from its mixture with nitrogen[J]. Adsorption, 2018, 24(4): 357-369. |
65 | LI Ziyi, LIU Yingshu, ZHANG Chuanzhao, et al. Methane recovery from coal bed gas using modified activated carbons: A combined method for assessing the role of functional groups[J]. Energy & Fuels, 2015, 29(10): 6858-6865. |
66 | YAO Kexin, CHEN Yanli, LU Yue, et al. Ultramicroporous carbon with extremely narrow pore distribution and very high nitrogen doping for efficient methane mixture gases upgrading[J]. Carbon, 2017, 122: 258-265. |
67 | ZHANG Li, DONG Yonggang, ZHANG Dan, et al. Facile preparation of nitrogen-doped microporous carbon from potassium citrate/urea for effective CH4 separation and uptake[J]. Fuel, 2023, 351: 128915. |
68 | DUSSELIER Michiel, DAVIS Mark E. Small-pore zeolites: Synthesis and catalysis[J]. Chemical Reviews, 2018, 118(11): 5265-5329. |
69 | REINOSO Deborath, ADROVER María, PEDERNERA Marisa. Green synthesis of nanocrystalline faujasite zeolite[J]. Ultrasonics Sonochemistry, 2018, 42: 303-309. |
70 | KNYAZEVA E E, IVANOVA I I. Synthesis of nanoscale zeolites[J]. Petroleum Chemistry, 2019, 59(3): 262-274. |
71 | TANG Xuan, LIU Jiaqi, SHANG Hua, et al. Gas diffusion and adsorption capacity enhancement via ultrasonic pretreatment for hydrothermal synthesis of K-KFI zeolite with nano/micro-scale crystals[J]. Microporous and Mesoporous Materials, 2020, 297: 110036. |
72 | YANG Jiangfeng, LIU Jiaqi, LIU Puxu, et al. K-chabazite zeolite nanocrystal aggregates for highly efficient methane separation[J]. Angewandte Chemie International Edition, 2022, 61(8): e202116850. |
73 | YANG Jiangfeng, TANG Xuan, LIU Jiaqi, et al. Down-sizing the crystal size of ZK-5 zeolite for its enhanced CH4 adsorption and CH4/N2 separation performances[J]. Chemical Engineering Journal, 2021, 406: 126599. |
74 | KENNEDY D A, TEZEL F H. Cation exchange modification of clinoptilolite—Screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide[J]. Microporous and Mesoporous Materials, 2018, 262: 235-250. |
75 | WU Yaqi, YUAN Danhua, ZENG Shu, et al. Significant enhancement in CH4/N2 separation with amine-modified zeolite Y[J]. Fuel, 2021, 301: 121077. |
76 | KENCANA Kevin S, MIN Jung Gi, Christian KEMP K, et al. Nanocrystalline Ag-ZK-5 zeolite for selective CH4/N2 separation[J]. Separation and Purification Technology, 2022, 282: 120027. |
77 | SHANG Jin, LI Gang, GU Qinfen, et al. Temperature controlled invertible selectivity for adsorption of N2 and CH4 by molecular trapdoor chabazites[J]. Chemical Communications, 2014, 50(35): 4544-4546. |
78 | ZHAO Jianhua, MOUSAVI Seyed Hesam, XIAO Gongkui, et al. Nitrogen rejection from methane via a “trapdoor” K-ZSM-25 zeolite[J]. Journal of the American Chemical Society, 2021, 143(37): 15195-15204. |
79 | YILMAZ Gamze, Shing Bo PEH, ZHAO Dan, et al. Atomic-and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications[J]. Advanced Science, 2019, 6(21): 1901129. |
80 | ZHOU Sheng, SHEKHAH Osama, Adrian RAMÍREZ, et al. Asymmetric pore windows in MOF membranes for natural gas valorization[J]. Nature, 2022, 606(7915): 706-712. |
81 | Labeeb ALI, MAHMOUD Eyas. Recent advances in the design of metal-organic frameworks for methane storage and delivery[J]. Journal of Porous Materials, 2021, 28(1): 213-230. |
82 | NIU Zheng, CUI Xili, PHAM Tony, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angewandte Chemie International Edition, 2019, 58(30): 10138-10141. |
83 | YOON Ji Woong, CHANG Hyunju, LEE Seung-Joon, et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites[J]. Nature Materials, 2017, 16(5): 526-531. |
84 | ZHANG Feifei, SHANG Hua, WANG Li, et al. Substituent-induced electron-transfer strategy for selective adsorption of N2 in MIL-101(Cr)-X metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 2146-2154. |
85 | JARAMILLO David E, REED Douglas A, JIANG Henry Z H, et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites[J]. Nature Materials, 2020, 19(5): 517-521. |
[1] | YU Mengjie, WU Yutong, LUO Faxiang, DOU Yibo. Research progress on structural design of photocatalysts for diluted carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 335-350. |
[2] | WANG Bowei, ZHENG Mingzhen, WANG Lemeng, FU Dong, WANG Shan, ZHU Shengjun, ZHAO Kun, ZHANG Pan. Preparation of NaOH for CO2 capture by electrolysis of Na2SO4 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 604-614. |
[3] | WU Xining, ZHANG Ning, QIN Jiamin, XU Long, WEI Chaoyang, MA Xiaoxun. Performance of methanol-based nanofluids with enhanced CO2 absorption under low cooling demand [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2811-2822. |
[4] | SU Huihui, WANG Enlu, XU Yifei. Advances in research on capture of post-combustion carbon dioxide by liquid adsorbents [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5734-5747. |
[5] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[6] | HU Peng, ZHAO Dan, JI Hongbing. Temperature-controlled biomimetic induced-fit-identification for boosting syngas purification [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6133-6135. |
[7] | Fei SHI, Yifan LI. Advances of mixed matrix membrane for CO2 capture [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. |
[8] | Chaoying SUN, Yingjie LI, Xianyao YAN, Jianli ZHAO. Hydration/dehydration thermochemical heat storage performance of CaO from CO2 capture cycles [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1734-1743. |
[9] | Hanke LI, Chengxiong DANG, Guangxing YANG, Yonghai CAO, Hongjuan WANG, Feng PENG, Hao YU. Process intensification techniques towards carbon dioxide capture: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. |
[10] | Hao HUANG,Tao WANG,Mengxiang FANG. Review on carbon dioxide mineral carbonation curing technology of concrete and novel material development [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4363-4373. |
[11] | Zhihong WANG, Xiaoming DING, Ming’ou WU, Xiaoyan SHEN. Application of organic Rankine cycle in multi-grade waste heat power generation [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2189-2196. |
[12] | Haizhou LIN, Haizhong LUO, Aiguo PEI, Mengxiang FANG. Simulation and analysis of carbon dioxide capture process using MDEA/PZ blend solution in a coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2019, 38(04): 2046-2055. |
[13] | LIU Kang, XU Shisen, LI Guangyu, REN Yongqiang. Technological process and system analysis of pre-combustion CO2 capture based on IGCC [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4897-4907. |
[14] | HE Junnan, WANG Junyao, DENG Shuai, ZHAO Ruikai, ZHAO Li. Research progress on energy-efficiency analysis of carbon capture:theoretical model, evaluation tool and developing trend [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 406-415. |
[15] | LIU Jun, MENG Guixiang, YAO Sheng, WANG Zhucheng, XU Kai, HANG Guoqing. Analysis on influence factors of CO2 adsorption kinetics under ultra-low CO2 atmosphere [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 3092-3099. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |