Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5717-5729.DOI: 10.16085/j.issn.1000-6613.2024-1465
• Energy processes and technology • Previous Articles
WANG Yiming1,2(
), CHEN Wei3, BU Xianbiao1,2(
)
Received:2024-09-06
Revised:2024-11-23
Online:2025-11-10
Published:2025-10-25
Contact:
BU Xianbiao
通讯作者:
卜宪标
作者简介:王一鸣(2000—),男,硕士研究生,研究方向为地热能利用技术。E-mail:wangym0331@126.com。
基金资助:CLC Number:
WANG Yiming, CHEN Wei, BU Xianbiao. Quantitative analysis of influential factors of formation heat losses in high-temperature aquifer thermal energy storage system[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5717-5729.
王一鸣, 陈伟, 卜宪标. 高温含水层储热系统地层热损失影响因素量化分析[J]. 化工进展, 2025, 44(10): 5717-5729.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1465
| 模型参数 | 储层 | 盖层和隔层 |
|---|---|---|
| 密度/kg·m-3 | 2500 | 2500 |
| 孔隙度 | 0.2[0.15~0.25] | 0.05[0.01~0.1] |
| 横向渗透率/mD | 1500[300~4500] | 0.5 |
| 纵向渗透率/mD | 500[100~1500] | 0.05 |
| 热导率/W·m-1·K-1 | 2.5[1.5~2.5] | 1.05[0.8~1.5] |
| 定压比热容/J·kg-1·K-1 | 930[830~1030] | 770 |
| 地层温度/℃ | 45 | 45 |
| 注入温度/℃ | 60[55~70] | — |
| 注入流量/m3·h-1 | 20[ | — |
| 采出流量/m3·h-1 | 30[ | — |
| 模型参数 | 储层 | 盖层和隔层 |
|---|---|---|
| 密度/kg·m-3 | 2500 | 2500 |
| 孔隙度 | 0.2[0.15~0.25] | 0.05[0.01~0.1] |
| 横向渗透率/mD | 1500[300~4500] | 0.5 |
| 纵向渗透率/mD | 500[100~1500] | 0.05 |
| 热导率/W·m-1·K-1 | 2.5[1.5~2.5] | 1.05[0.8~1.5] |
| 定压比热容/J·kg-1·K-1 | 930[830~1030] | 770 |
| 地层温度/℃ | 45 | 45 |
| 注入温度/℃ | 60[55~70] | — |
| 注入流量/m3·h-1 | 20[ | — |
| 采出流量/m3·h-1 | 30[ | — |
| [1] | 赵欣. “双碳”背景下国外能源生产消费现状对我国能源安全保障的启示[J]. 中国煤炭地质, 2022, 34(11): 35-40. |
| ZHAO Xin. Enlightenment of foreign energy production and consumption status quo on China’s energy security under the background of “carbon peaking and carbon neutrality”[J]. Coal Geology of China, 2022, 34(11): 35-40. | |
| [2] | 孔令令, 李彪铭. 东北农村清洁供暖适用技术研究[J]. 黑龙江科学, 2022, 13(16): 82-84. |
| KONG Lingling, LI Biaoming. Study on the appropriate technology of clean heating in northeast rural areas[J]. Heilongjiang Science, 2022, 13(16): 82-84. | |
| [3] | 刘常平, 张时聪, 杨芯岩, 等. “十三五”我国建筑领域煤炭消耗总量计算研究[J]. 中国能源, 2021, 43(2): 28-33. |
| LIU Changping, ZHANG Shicong, YANG Xinyan, et al. Research on coal consumption in building sector during the 13th Five-Year Plan period[J]. Energy of China, 2021, 43(2): 28-33. | |
| [4] | 刘强, 梁晓云, 王红, 等. 北方清洁供暖现状和趋势分析[J]. 中国能源, 2021, 43(1): 17-22, 41. |
| LIU Qiang, LIANG Xiaoyun, WANG Hong, et al. Current situation and trend analysis of clean heating in North China[J]. Energy of China, 2021, 43(1): 17-22, 41. | |
| [5] | 孔令令, 尹勇. 我国北方地区清洁供暖规划技术路线及发展新模式[J]. 城市住宅, 2019, 26(11): 213-214. |
| KONG Lingling, YIN Yong. Technical route and new development mode of clean heating planning in Northern China[J]. City & House, 2019, 26(11): 213-214. | |
| [6] | 胡润青, 孙培军, 窦克军, 等. 低碳清洁供热的现状、问题和政策建议[J]. 中国能源, 2021, 43(10): 41-46. |
| HU Runqing, SUN Peijun, DOU Kejun, et al. Status, problems and policy suggestions of low carbon clean heating[J]. Energy of China, 2021, 43(10): 41-46. | |
| [7] | 孙振锋. 我国北方地区冬季清洁取暖现状及存在问题[J]. 河北农业, 2018(2): 42-44. |
| SUN Zhenfeng. Present situation and existing problems of clean heating in winter in northern China[J]. Hebei Agriculture, 2018(2): 42-44. | |
| [8] | 邹雪梅, 曲云霞, 贾北平, 等. 太阳能供暖现状及分析[J]. 低温建筑技术, 2015, 37(3): 134-135. |
| ZOU Xuemei, QU Yunxia, JIA Beiping, et al. Present situation and analysis of solar energy heating[J]. Low Temperature Architecture Technology, 2015, 37(3): 134-135. | |
| [9] | 董晓亚, 李德英. 太阳能在供热中的应用[C]// 2019供热工程建设与高效运行研讨会. 中国土木工程学会, 2019: 233-237. |
| Dong Xiaoya, Li Deying. Application of solar energy in heating[C]// 2019 Heating Engineering Construction and Efficient Operation Seminar. China Civil Engineering Society, 2019: 233-237. | |
| [10] | 隋德洋, 王启民. 中国地下含水层跨季节储热可行性分析[J]. 能源与节能, 2023(1): 38-40. |
| SUI Deyang, WANG Qimin. Feasibility of trans-seasonal heat storage in underground aquifers in China[J]. Energy and Energy Conservation, 2023(1): 38-40. | |
| [11] | 芮振华, 刘月亮, 张政, 等. 地热储能技术研究进展及未来展望[J]. 石油科学通报, 2024, 9(2): 260-281. |
| RUI Zhenhua, LIU Yueliang, ZHANG Zheng, et al. Research progress and prospect of geothermal energy storage technology[J]. Petroleum Science Bulletin, 2024, 9(2): 260-281. | |
| [12] | 宋显超. 地热供暖技术应用探讨[J]. 河南建材, 2019(5): 315-316. |
| SONG Xianchao. Discussion on application of geothermal heating technology[J]. Henan Building Materials, 2019(5): 315-316. | |
| [13] | HOU Jianchao, CAO Mengchao, LIU Pingkuo. Development and utilization of geothermal energy in China: Current practices and future strategies[J]. Renewable Energy, 2018, 125: 401-412. |
| [14] | 黄嘉超, 梁海军, 谷雪曦. 中国地热能发展形势及“十四五”发展建议[J]. 世界石油工业, 2021, 28(2): 41-46. |
| HUANG Jiachao, LIANG Haijun, GU Xuexi. Development situation of geothermal energy in China and development proposals in the 14th Five-Year Plan period[J]. World Petroleum Industry, 2021, 28(2): 41-46. | |
| [15] | 黄永辉, 庞忠和, 程远志, 等. 深层含水层地下储热技术的发展现状与展望[J]. 地学前缘, 2020, 27(1): 17-24. |
| HUANG Yonghui, PANG Zhonghe, CHENG Yuanzhi, et al. The development and outlook of the deep aquifer thermal energy storage(deep-ATES)[J]. Earth Science Frontiers, 2020, 27(1): 17-24. | |
| [16] | 申恒明. 我国地热能开发利用现状及发展趋势[J]. 科学技术创新, 2019(14): 20-21. |
| SHEN Hengming. Present situation and development trend of geothermal energy development and utilization in China[J]. Scientific and Technological Innovation, 2019(14): 20-21. | |
| [17] | 张媛媛, 叶灿滔, 龚宇烈, 等. 地下储能技术研究现状及发展[J]. 华电技术, 2021, 43(11): 49-57. |
| ZHANG Yuanyuan, YE Cantao, GONG Yulie, et al. Review and prospect of underground thermal energy storage technology[J]. Huadian Technology, 2021, 43(11): 49-57. | |
| [18] | LYDEN A, BROWN C S, KOLO I, et al. Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112760. |
| [19] | MAHON Harry, Dominic O’CONNOR, FRIEDRICH Daniel, et al. A review of thermal energy storage technologies for seasonal loops[J]. Energy, 2022, 239: 122207. |
| [20] | ZHANG Yuanyuan, GAO Xiaorong, SUN Caixia, et al. Thermal performance and analysis of high-temperature aquifer thermal energy storage based on a practical project[J]. Journal of Energy Storage, 2024, 82: 110399. |
| [21] | 黄永辉, 杨俊生, 朱传庆, 等. 深部含水层储热系统的数值模拟研究[J]. 地球学报, 2023, 44(1): 239-247. |
| HUANG Yonghui, YANG Junsheng, ZHU Chuanqing, et al. Numerical modeling of the high-temperature thermal energy storage system in deep aquifers[J]. Acta Geoscientica Sinica, 2023, 44(1): 239-247. | |
| [22] | ZHANG Yuanyuan, YE Cantao, KONG Yanlong, et al. Thermal attenuation and heat supplementary analysis of medium-deep coaxial borehole system-based on a practical project[J]. Energy, 2023, 270: 126805. |
| [23] | FLEUCHAUS Paul, GODSCHALK Bas, STOBER Ingrid, et al. Worldwide application of aquifer thermal energy storage—A review[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 861-876. |
| [24] | GAO Liuhua, ZHAO Jun, AN Qingsong, et al. A review on system performance studies of aquifer thermal energy storage[J]. Energy Procedia, 2017, 142: 3537-3545. |
| [25] | HOLSTENKAMP Lars, MEISEL Marcus, NEIDIG Phillip, et al. Interdisciplinary review of medium-deep aquifer thermal energy storage in north Germany[J]. Energy Procedia, 2017, 135: 327-336. |
| [26] | KABUS Frank, WOLFGRAMM Markus, SEIBT Andrea, et al. Aquifer thermal energy storage in Neubrandenburg-monitoring throughout three years of regular operation[C]// The 11th International Conference on Energy Storage, 2009. |
| [27] | KABUS Frank, SEIBT Peter. Aquifer thermal energy storage for the Berlin Reichstag building-new seat of the german parliament[C]// Proceedings of the World Geothermal Congress. 2000: 3611-3615. |
| [28] | SCHOUT Gilian, DRIJVER Benno, Mariene GUTIERREZ-NERI, et al. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: A Rayleigh-based method[J]. Hydrogeology Journal, 2014, 22(1): 281-291. |
| [29] | SCHOUT Gilian, DRIJVER Benno, SCHOTTING Ruud. The influence of the injection temperature on the recovery efficiency of high temperature aquifer thermal energy storage: Comment on Jeonet al. , 2015[J]. Energy, 2016, 103: 107-109. |
| [30] | SHI Yu, CUI Qiliang, SONG Xianzhi, et al. Thermal performance of the aquifer thermal energy storage system considering vertical heat losses through aquitards[J]. Renewable Energy, 2023, 207: 447-460. |
| [31] | KIM Jongchan, LEE Youngmin, YOON Woon Sang, et al. Numerical modeling of aquifer thermal energy storage system[J]. Energy, 2010, 35(12): 4955-4965. |
| [32] | VAN LOPIK Jan H, HARTOG Niels, ZAADNOORDIJK Willem Jan. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems[J]. Hydrogeology Journal, 2016, 24(5): 1255-1271. |
| [33] | SHELDON Heather A, WILKINS Andy, GREEN Christopher P. Recovery efficiency in high-temperature aquifer thermal energy storage systems[J]. Geothermics, 2021, 96: 102173. |
| [34] | GAO Liuhua, ZHAO Jun, AN Qingsong, et al. Thermal performance of medium-to-high-temperature aquifer thermal energy storage systems[J]. Applied Thermal Engineering, 2019, 146: 898-909. |
| [35] | FLEUCHAUS Paul, Simon SCHÜPPLER, BLOEMENDAL Martin, et al. Risk analysis of high-temperature aquifer thermal energy storage (HT-ATES)[J]. Renewable and Sustainable Energy Reviews, 2020, 133: 110153. |
| [36] | POSSEMIERS Mathias, HUYSMANS Marijke, BATELAAN Okke. Influence of aquifer thermal energy storage on groundwater quality: A review illustrated by seven case studies from Belgium[J]. Journal of Hydrology: Regional Studies, 2014, 2: 20-34. |
| [37] | HUANG Yonghui, PANG Zhonghe, KONG Yanlong, et al. Assessment of the high-temperature aquifer thermal energy storage (HT-ATES) potential in naturally fractured geothermal reservoirs with a stochastic discrete fracture network model[J]. Journal of Hydrology, 2021, 603: 127188. |
| [38] | MOLZ F J, MELVILLE J G, PARR A D, et al. Aquifer thermal energy storage: A well doublet experiment at increased temperatures[J]. Water Resources Research, 1983, 19(1): 149-160. |
| [39] | BUSCHECK Thomas A, DOUGHTY Christine, TSANG Chin Fu. Prediction and analysis of a field experiment on a multilayered aquifer thermal energy storage system with strong buoyancy flow[J]. Water Resources Research, 1983, 19(5): 1307-1315. |
| [40] | MOLZ F J, MELVILLE J G, GÜVEN O, et al. Aquifer thermal energy storage: An attempt to counter free thermal convection[J]. Water Resources Research, 1983, 19(4): 922-930. |
| [41] | JEON Jun-Seo, LEE Seung-Rae, PASQUINELLI Lisa, et al. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well[J]. Energy, 2015, 90: 1349-1359. |
| [42] | 车用太, 何案华, 鱼金子. 水温微动态形成的水热动力学与地热动力学机制[J]. 地震学报, 2014, 36(1): 106-117. |
| CHE Yongtai, HE Anhua, YU Jinzi. Mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior[J]. Acta Seismologica Sinica, 2014, 36(1): 106-117. | |
| [43] | 黄云英, 张元福, 赵健龙, 等. 大理州洱源地区地热储层特征及模式[J]. 地质学报, 2025(3): 945-959. |
| HUANG Yunying, ZHANG Yuanfu, ZHAO Jianlong, et al. Characteristics and model of geothermal reservoir in Eryuan area of Dali prefecture[J]. Acta Geologica Sinica, 2025, 99(3): 945-959. | |
| [44] | 徐拴海, 沈浩. 岩石热导率影响因素及预测研究综述[J]. 科学技术与工程, 2022, 22(16): 6369-6376. |
| XU Shuanhai, SHEN Hao. Review on influencing factors and prediction of rock thermal conductivity[J]. Science Technology and Engineering, 2022, 22(16): 6369-6376. |
| [1] | CHENG Yun, ZHOU Xiaoli, CAO Zhiqiang, ZHOU Jie, DONG Weiliang, JIANG Min. Comparison of the environmental impacts of waste PET enzymatic depolymerization and alkaline hydrolysis through LCA [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2788-2797. |
| [2] | ZHAO Qiaonan, LIU Xuemin, LIU Feng, XU Hongtao, LIU Zhaohai, LIAO Xiaowei. Numerical on emissions mechanism of nitrogen oxides in gas-fired boilers blended with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5637-5647. |
| [3] | LUO Zhenmin, LIU Lu, SU Bin, SONG Fangzhi. Effect of inert gas on ethylene explosion limit parameters and kinetic characteristics [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4653-4661. |
| [4] | ZHENG Zhihang, LI Qian, ZHANG Jiayuan, ZHOU Haoyu. Simulation of industrial Shell entrained flow bed by Aspen Plus [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2152-2160. |
| [5] | LIU Zuoren, XU Chuanlong, TANG Guanghua. Simulation and sensitivity analysis of flue gas environmental protection island system in coal-fired unit based on ASPEN Plus [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6564-6573. |
| [6] | CAO Xuewen, YANG Jian, BIAN Jiang, LIU Yang, GUO Dan, LI Qigui. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. |
| [7] | Junjie TIAN, Yue WANG, Jianeng WU, Jie ZHOU, Shichang XU. Application research of hydrostatic bearing technology in rotary energy recovery device for seawater desalination system [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 798-804. |
| [8] | LIU Zhonghui, YU Kuangshi, ZHANG Haixia, ZHU Zhiping. Simulation of industrial circulating fluidized bed gasifier by Aspen Plus [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1709-1717. |
| [9] | DONG Fenglian, WANG Hua, LIU Hualin, WANG Zhe, JU Shengtao. New generation of planning optimization system oriented to collaborative application [J]. Chemical Industry and Engineering Progree, 2016, 35(07): 1986-1993. |
| [10] | GAO Ning, GAO Qiuju, SUN Wei, ZHANG Xinyu. Sensitivity analysis of total construction cost of supply chain in international petrochemical engineering project [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 965-969. |
| [11] | LIU Hao1,3,YANG Huan2,3,YUAN Tao1,3,LI Xu2,3,DUAN-MU Mian1,3,YU Huimin2,3. Characterization of a lipopeptide-glycolipid blend biosurfactant and the effect of alcohol cosurfactant [J]. Chemical Industry and Engineering Progree, 2013, 32(12): 2952-2956. |
| [12] | WANG Jiyan,TENG Hu,XIU Zhilong. Cost analysis on three separation processes in microbial production of 1,3-propanediol [J]. Chemical Industry and Engineering Progree, 2012, 31(01 ): 35-40. |
| [13] | NI Jin,CUI Guomin,JIANG Hui,HU Xiangbai. Flexibility identification and operation optimization based on by-pass adjustment of heat exchanger networks [J]. Chemical Industry and Engineering Progree, 2010, 29(1): 17-. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |