| [1] |
JIANG Guiwen, HUANG Juhua, LIU Mingchun, et al. Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material[J]. Applied Thermal Engineering, 2017, 120: 1-9.
|
| [2] |
PUTRA Nandy, ARIANTARA Bambang, PAMUNGKAS Rangga Aji. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application[J]. Applied Thermal Engineering, 2016, 99: 784-789.
|
| [3] |
MOTLOCH Chester G, CHRISTOPHERSEN Jon P, BELT Jeffrey R, et al. High-power battery testing procedures and analytical methodologies for HEV’s[C]// SAE Technical Paper Series. SAE International, 2002: 797-802.
|
| [4] |
ZHAO Ding, CHEN Mingbiao, Jie LYU, et al. Multi-objective optimization of battery thermal management system combining response surface analysis and NSGA-II algorithm[J]. Energy Conversion and Management, 2023, 292: 117374.
|
| [5] |
LI Rui, GAN Yunhua, LUO Qiliang, et al. Research progress on efficient thermal management system for electric vehicle batteries based on two-phase transformation[J]. Applied Thermal Engineering, 2023, 234: 121270.
|
| [6] |
A A Hakeem AKINLABI, SOLYALI Davut. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 125: 109815.
|
| [7] |
SMITH Joshua, SINGH Randeep, HINTERBERGER Michael, et al. Battery thermal management system for electric vehicle using heat pipes[J]. International Journal of Thermal Sciences, 2018, 134: 517-529.
|
| [8] |
XIN Qianqian, XIAO Jinsheng, YANG Tianqi, et al. Thermal management of lithium-ion batteries under high ambient temperature and rapid discharging using composite PCM and liquid cooling[J]. Applied Thermal Engineering, 2022, 210: 118230.
|
| [9] |
SHI Hong, LIU Meinan, LI Yonghao, et al. Multi-objective optimization of integrated lithium-ion battery thermal management system[J]. Applied Thermal Engineering, 2023, 223: 119991.
|
| [10] |
YANG Wen, ZHOU Fei, ZHOU Haobing, et al. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120307.
|
| [11] |
XU Jun, GUO Zhechen, XU Ziming, et al. A systematic review and comparison of liquid-based cooling system for lithium-ion batteries[J]. eTransportation, 2023, 17: 100242.
|
| [12] |
RAO Zhonghao, ZHANG Xuan. Investigation on thermal management performance of wedge-shaped microchannels for rectangular Li-ion batteries[J]. International Journal of Energy Research, 2019, 43(8): 3876-3890.
|
| [13] |
何瑞强, 方敏, 周健夺, 等. 锂电池热管理用TPE基柔性复合相变材料的研究进展[J]. 化工进展, 2024, 43(6): 3159-3173.
|
|
HE Ruiqiang, FANG Min, ZHOU Jianduo, et al. Research progress of TPE-based flexible composite phase change materials for thermal management of lithium batteries[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3159-3173.
|
| [14] |
GAN Yunhua, WANG Jianqin, LIANG Jialin, et al. Development of thermal equivalent circuit model of heat pipe-based thermal management system for a battery module with cylindrical cells[J]. Applied Thermal Engineering, 2020, 164: 114523.
|
| [15] |
WANG Jianqin, GAN Yunhua, LIANG Jialin, et al. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells[J]. Applied Thermal Engineering, 2019, 151: 475-485.
|
| [16] |
LIANG Jialin, GAN Yunhua, LI Yong. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures[J]. Energy Conversion and Management, 2018, 155: 1-9.
|
| [17] |
GAN Yunhua, HE Linfeng, LIANG Jialin, et al. A numerical study on the performance of a thermal management system for a battery pack with cylindrical cells based on heat pipes[J]. Applied Thermal Engineering, 2020, 179: 115740.
|
| [18] |
赵佳腾, 饶中浩, 李意民. 基于相变材料的动力电池热管理数值模拟[J]. 工程热物理学报, 2016, 37(6): 1275-1280.
|
|
ZHAO Jiateng, RAO Zhonghao, LI Yimin. Numerical simulation of power battery thermal management based on phase change materials[J]. Journal of Engineering Thermophysics, 2016, 37(6): 1275-1280.
|
| [19] |
YI Feng, Jiaqiang E, ZHANG Bin, et al. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method[J]. Renewable Energy, 2022, 181: 472-489.
|
| [20] |
陈志峰, 陈江英, 李翔晟, 等. 相变材料强化传热的动力电池散热性能研究[J]. 电源技术, 2021, 45(10): 1283-1286.
|
|
CHEN Zhifeng, CHEN Jiangying, LI Xiangsheng, et al. Research on heat dissipation performance of power battery with enhanced heat transfer by phase change material[J]. Chinese Journal of Power Sources, 2021, 45(10): 1283-1286.
|
| [21] |
黄钦, 余凌峰, 陈凯. 相变材料耦合冷板电池热管理系统的优化设计[J]. 应用数学和力学, 2022, 43(11): 1195-1202.
|
|
HUANG Qin, YU Lingfeng, CHEN Kai. Design of the battery thermal management system with phase change material coupled cold plates[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1195-1202.
|
| [22] |
KONG Depeng, PENG Rongqi, PING Ping, et al. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures[J]. Energy Conversion and Management, 2020, 204: 112280.
|
| [23] |
DING Yuzhang, JI Haocheng, WEI Minxiang, et al. Effect of liquid cooling system structure on lithium-ion battery pack temperature fields[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122178.
|
| [24] |
LI Ao, YUEN Anthony Chun Yin, WANG Wei, et al. Numerical investigation on the thermal management of lithium-ion battery system and cooling effect optimization[J]. Applied Thermal Engineering, 2022, 215: 118966.
|
| [25] |
MANSOUR Saba, JALALI Alireza, ASHJAEE Mehdi, et al. Multi-objective optimization of a sandwich rectangular-channel liquid cooling plate battery thermal management system: A deep-learning approach[J]. Energy Conversion and Management, 2023, 290: 117200.
|
| [26] |
MOKHTARI MEHMANDOOSTI Mohammad, KOWSARY Farshad. Artificial neural network-based multi-objective optimization of cooling of lithium-ion batteries used in electric vehicles utilizing pulsating coolant flow[J]. Applied Thermal Engineering, 2023, 219: 119385.
|
| [27] |
LENG Ziyu, YUAN Yanping, CAO Xiaoling, et al. Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance[J]. Energy, 2022, 240: 122754.
|
| [28] |
KHAN Shahid Ali, Chika EZE, DONG Kejian, et al. Design of a new optimized U-shaped lightweight liquid-cooled battery thermal management system for electric vehicles: A machine learning approach[J]. International Communications in Heat and Mass Transfer, 2022, 136: 106209.
|
| [29] |
HE Linfeng, TANG Xianwen, LUO Qiliang, et al. Structure optimization of a heat pipe-cooling battery thermal management system based on fuzzy grey relational analysis[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121924.
|
| [30] |
LIU Feifei, CHEN Yangyang, QIN Wu, et al. Optimal design of liquid cooling structure with bionic leaf vein branch channel for power battery[J]. Applied Thermal Engineering, 2023, 218: 119283.
|
| [31] |
DRAKE S J, WETZ D A, OSTANEK J K, et al. Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells[J]. Journal of Power Sources, 2014, 252: 298-304.
|
| [32] |
LI Li, LING Lei, XIE Yajun, et al. Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling[J]. Energy, 2023, 274: 127414.
|
| [33] |
黄菊花, 陈强, 曹铭, 等. 相变材料与水套式液冷结构耦合的圆柱型锂离子电池组热管理仿真分析[J]. 储能科学与技术, 2021, 10(4): 1423-1431.
|
|
HUANG Juhua, CHEN Qiang, CAO Ming, et al. Thermal management simulation analysis of cylindrical lithium-ion battery pack coupled with phase change material and water-jacketed liquid-cooled structures[J]. Energy Storage Science and Technology, 2021, 10(4): 1423-1431.
|
| [34] |
LEBROUHI B E, LAMRANI B, OUASSAID M, et al. Low-cost numerical lumped modelling of lithium-ion battery pack with phase change material and liquid cooling thermal management system[J]. Journal of Energy Storage, 2022, 54: 105293.
|
| [35] |
刘欣悦. 电动汽车动力电池热分析及液冷控制研究[D]. 重庆: 重庆邮电大学, 2022.
|
|
LIU Xinyue. Research on thermal analysis and liquid cooling control of electric vehicle power battery[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2022.
|
| [36] |
CHOI Hongseok, LEE Hyoseong, KIM Jeebeom, et al. Hybrid single-phase immersion cooling structure for battery thermal management under fast-charging conditions[J]. Energy Conversion and Management, 2023, 287: 117053.
|
| [37] |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
|
| [38] |
JIANG Guiwen, HUANG Juhua, FU Yanshu, et al. Thermal optimization of composite phase change material/expanded graphite for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2016, 108: 1119-1125.
|
| [39] |
IORDANIS Ioannis, KOUKOUVINOS Christos, SILOU Iliana. On the efficacy of conditioned and progressive Latin hypercube sampling in supervised machine learning[J]. Applied Numerical Mathematics, 2025, 208: 256-270.
|
| [40] |
AASI Harpreet Kaur, MISHRA Manish. Experimental investigation and ANN modelling on thermo-hydraulic efficacy of cross-flow three-fluid plate-fin heat exchanger[J]. International Journal of Thermal Sciences, 2021, 164: 106870.
|