Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 388-397.DOI: 10.16085/j.issn.1000-6613.2023-2266
• Materials science and technology • Previous Articles Next Articles
WEN Jing(
), ZHANG Hongying(
), ZHANG Yingdong, XU Runze
Received:2023-12-25
Revised:2024-02-07
Online:2025-02-13
Published:2025-01-15
Contact:
ZHANG Hongying
通讯作者:
张红婴
作者简介:闻静(1998—),女,硕士研究生,研究方向为建筑节能技术。E-mail:1002768975@qq.com。
基金资助:CLC Number:
WEN Jing, ZHANG Hongying, ZHANG Yingdong, XU Runze. Development and performance characterization of architectural energy storage materials with lauric acid-paraffin binary eutectic and nanosized SiO2 aerogel[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 388-397.
闻静, 张红婴, 张屹东, 许润泽. 月桂酸-石蜡二元共晶和纳米SiO2气凝胶新型建筑储能材料的研制和性能表征[J]. 化工进展, 2025, 44(1): 388-397.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2266
| 相变材料 | 熔化温度 | 熔化潜热 | 凝固温度 | 凝固潜热 |
|---|---|---|---|---|
| 月桂酸(LA) | 43.3 | 178.11 | 32.97 | 178.98 |
| 石蜡(PS) | 30.79 | 36.03 | 23.98 | 34.09 |
| 55.04 | 165.2 | 43.90 | 181.7 | |
| LA-PS(75∶25) | 37.28 | 171.86 | 34.11 | 180.36 |
| LA-PS(76∶24) | 37.25 | 181.16 | 34.23 | 179.46 |
| LA-PS(77∶23) | 37.50 | 179.66 | 34.48 | 187.46 |
| 相变材料 | 熔化温度 | 熔化潜热 | 凝固温度 | 凝固潜热 |
|---|---|---|---|---|
| 月桂酸(LA) | 43.3 | 178.11 | 32.97 | 178.98 |
| 石蜡(PS) | 30.79 | 36.03 | 23.98 | 34.09 |
| 55.04 | 165.2 | 43.90 | 181.7 | |
| LA-PS(75∶25) | 37.28 | 171.86 | 34.11 | 180.36 |
| LA-PS(76∶24) | 37.25 | 181.16 | 34.23 | 179.46 |
| LA-PS(77∶23) | 37.50 | 179.66 | 34.48 | 187.46 |
| 性能 | 实验仪器 | 制造商(型号) | 实验条件 |
|---|---|---|---|
| CPCMs的微观形态 | 扫描电子显微镜(SEM) | FEI MLA650F, USA | — |
| CPCMs的热性能稳定性 | 差示扫描量热仪(DSC) | 美国DSC2500 | 0~80℃,5℃/min,N2 |
| CPCMs的化学结构 | 傅里叶变换红外光谱仪(FTIR) | 美国热电科学公司Nicolet iS20 | 波数范围:400~4000cm-1 |
| CPCMs的晶体结构 | X射线衍射仪(XRD) | 德国布鲁克D8 Advance | 角度范围:5°~90° 扫描速度:10(°)/min |
| CPCMs的热稳定性 | 热重分析仪(TG) | NETZSCH STA499 F5,德国 | 30~600℃,N2,10℃/min |
| 性能 | 实验仪器 | 制造商(型号) | 实验条件 |
|---|---|---|---|
| CPCMs的微观形态 | 扫描电子显微镜(SEM) | FEI MLA650F, USA | — |
| CPCMs的热性能稳定性 | 差示扫描量热仪(DSC) | 美国DSC2500 | 0~80℃,5℃/min,N2 |
| CPCMs的化学结构 | 傅里叶变换红外光谱仪(FTIR) | 美国热电科学公司Nicolet iS20 | 波数范围:400~4000cm-1 |
| CPCMs的晶体结构 | X射线衍射仪(XRD) | 德国布鲁克D8 Advance | 角度范围:5°~90° 扫描速度:10(°)/min |
| CPCMs的热稳定性 | 热重分析仪(TG) | NETZSCH STA499 F5,德国 | 30~600℃,N2,10℃/min |
| 质量比 | 热处理前的质量m1/g | 热处理后的质量m2/g | 泄漏率 |
|---|---|---|---|
| 60∶40 | 0.471 | 0.471 | 仪器未检测出 |
| 65∶35 | 0.418 | 0.418 | 仪器未检测出 |
| 70∶30 | 0.406 | 0.404 | 0.4 |
| 75∶25 | 0.496 | 0.490 | 1.2 |
| 80∶20 | 0.516 | 0.506 | 1.9 |
| 质量比 | 热处理前的质量m1/g | 热处理后的质量m2/g | 泄漏率 |
|---|---|---|---|
| 60∶40 | 0.471 | 0.471 | 仪器未检测出 |
| 65∶35 | 0.418 | 0.418 | 仪器未检测出 |
| 70∶30 | 0.406 | 0.404 | 0.4 |
| 75∶25 | 0.496 | 0.490 | 1.2 |
| 80∶20 | 0.516 | 0.506 | 1.9 |
| 参数 | 数值/% |
|---|---|
| 70 | |
| 63.97 | |
| 63.32 | |
| 91.39 | |
| 98.99 |
| 参数 | 数值/% |
|---|---|
| 70 | |
| 63.97 | |
| 63.32 | |
| 91.39 | |
| 98.99 |
| 复合相变材料 | 吸附率 /% | 熔化温度 /℃ | 熔化潜热 /J·g-1 | 参考文献 |
|---|---|---|---|---|
| 硬脂酸/膨胀石墨 | 37 | 53.2 | 48.4 | [ |
| SA/海泡石 | 49 | 67.1 | 94.4 | [ |
| CA-MA/蛭石 | 50 | 21.8 | 72.6 | [ |
| a-MMT/SA | 48 | 59.9 | 84.4 | [ |
| 海泡石/石蜡 | 50 | 35.70 | 62.08 | [ |
| 电纺SiO2/CA-LA-PA | 81.3 | 21.7 | 100.9 | [ |
| 膨胀珍珠岩/LA-PA-SA | 55 | 31.8 | 81.5 | [ |
| 蛭石/LA-PA-SA | 50 | 31.4 | 75.8 | [ |
| 复合相变材料 | 吸附率 /% | 熔化温度 /℃ | 熔化潜热 /J·g-1 | 参考文献 |
|---|---|---|---|---|
| 硬脂酸/膨胀石墨 | 37 | 53.2 | 48.4 | [ |
| SA/海泡石 | 49 | 67.1 | 94.4 | [ |
| CA-MA/蛭石 | 50 | 21.8 | 72.6 | [ |
| a-MMT/SA | 48 | 59.9 | 84.4 | [ |
| 海泡石/石蜡 | 50 | 35.70 | 62.08 | [ |
| 电纺SiO2/CA-LA-PA | 81.3 | 21.7 | 100.9 | [ |
| 膨胀珍珠岩/LA-PA-SA | 55 | 31.8 | 81.5 | [ |
| 蛭石/LA-PA-SA | 50 | 31.4 | 75.8 | [ |
| 循环次数/次 | ||||
|---|---|---|---|---|
| 1 | 35.19 | 115.89 | 32.45 | 112.47 |
| 250 | 35.64 | 115.14 | 32.75 | 111.93 |
| 500 | 36.29 | 114.76 | 32.90 | 108.78 |
| 750 | 34.33 | 112.45 | 31.16 | 102.67 |
| 1000 | 33.98 | 110.59 | 31.36 | 104.37 |
| 循环次数/次 | ||||
|---|---|---|---|---|
| 1 | 35.19 | 115.89 | 32.45 | 112.47 |
| 250 | 35.64 | 115.14 | 32.75 | 111.93 |
| 500 | 36.29 | 114.76 | 32.90 | 108.78 |
| 750 | 34.33 | 112.45 | 31.16 | 102.67 |
| 1000 | 33.98 | 110.59 | 31.36 | 104.37 |
| 1 | WANG Zhoujie, QIAO Yuhao, LIU Yan, et al. Thermal storage performance of building envelopes for nearly-zero energy buildings during cooling season in Western China: An experimental study[J]. Building and Environment, 2021, 194: 107709. |
| 2 | 李仕国, 王烨. 中国建筑能耗现状及节能措施概述[J]. 环境科学与管理, 2008, 33(2): 6-9. |
| LI Shiguo, WANG Ye. Summarization of present building energy consumption and corresponding strategies in China[J]. Environmental Science and Management, 2008, 33(2): 6-9. | |
| 3 | CUCE Erdem, RIFFAT Saffa B. A state-of-the-art review on innovative glazing technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 695-714. |
| 4 | ZHONG Kecheng, LI Shuhong, SUN Gaofeng, et al. Simulation study on dynamic heat transfer performance of PCM-filled glass window with different thermophysical parameters of phase change material[J]. Energy and Buildings, 2015, 106: 87-95. |
| 5 | WAN Xian, CHEN Cong, TIAN Songyun, et al. Thermal characterization of net-like and form-stable ML/SiO2 composite as novel PCM for cold energy storage[J]. Journal of Energy Storage, 2020, 28: 101276. |
| 6 | TYAGI V V, CHOPRA K, SHARMA R K, et al. A comprehensive review on phase change materials for heat storage applications: Development, characterization, thermal and chemical stability[J]. Solar Energy Materials and Solar Cells, 2022, 234: 111392. |
| 7 | LI Shuhong, SUN Gaofeng, ZOU Kaikai, et al. Experimental research on the dynamic thermal performance of a novel triple-pane building window filled with PCM[J]. Sustainable Cities and Society, 2016, 27: 15-22. |
| 8 | ZHANG Yinping, ZHOU Guobing, LIN Kunping, et al. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook[J]. Building and Environment, 2007, 42(6): 2197-2209. |
| 9 | ZHOU Jiahong, FEI Hua, HE Qian, et al. Structural characteristics and thermal performances of lauric-myristic-palmitic acid introduced into modified water hyacinth porous biochar for thermal energy storage[J]. Science of the Total Environment, 2023, 882: 163670. |
| 10 | HE Qian, FEI Hua, ZHOU Jiahong, et al. Utilization of carbonized water hyacinth for effective encapsulation and thermal conductivity enhancement of phase change energy storage materials[J]. Construction and Building Materials, 2023, 372: 130841. |
| 11 | M Francis Luther KING, RAO Putta Nageswara, SIVAKUMAR A, et al. Thermal performance of a double-glazed window integrated with a phase change material (PCM)[J]. Materials Today: Proceedings, 2022, 50: 1516-1521. |
| 12 | RATTANONGPHISAT Waraporn. Experimental study of double glass window with phase change material[J]. Advanced Materials Research, 2013, 770: 46-49. |
| 13 | KAUSHIK Nitish, SARAVANAKUMAR P, DHANASEKHAR S, et al. Thermal analysis of a double-glazing window using a Nano-Disbanded Phase Changing Material (NDPCM)[J]. Materials Today: Proceedings, 2022, 62: 1702-1707. |
| 14 | Martin KOLÁČEK, Hana CHARVÁTOVÁ, Stanislav SEHNÁLEK. Experimental and numerical research of the thermal properties of a PCM window panel[J]. Sustainability, 2017, 9(7): 1222. |
| 15 | GHADIM Hamidreza Benisi, SHAHBAZ Kaveh, Refat AL-SHANNAQ, et al. Binary mixtures of fatty alcohols and fatty acid esters as novel solid-liquid phase change materials[J]. International Journal of Energy Research, 2019: er.4852. |
| 16 | ZHANG Shihua, ZHANG Xuelai, XU Xiaofeng, et al. Preparation and properties of decyl-myristyl alcohol/expanded graphite low temperature composite phase change material[J]. Phase Transitions, 2020, 93(5): 491-503. |
| 17 | SAEED Rami M, SCHLEGEL J P, CASTANO C, et al. Preparation and thermal performance of methyl palmitate and lauric acid eutectic mixture as phase change material (PCM)[J]. Journal of Energy Storage, 2017, 13: 418-424. |
| 18 | CHANG Seong Jin, Seunghwan WI, JEONG Su-Gwang, et al. Thermal performance evaluation of macro-packed phase change materials (PCMs) using heat transfer analysis device[J]. Energy and Buildings, 2016, 117: 120-127. |
| 19 | SILVA Tiago, VICENTE Romeu, SOARES Nelson, et al. Experimental testing and numerical modelling of masonry wall solution with PCM incorporation: A passive construction solution[J]. Energy and Buildings, 2012, 49: 235-245. |
| 20 | BAO Jiaming, ZOU Deqiu, ZHU Sixian, et al. A medium-temperature, metal-based, microencapsulated phase change material with a void for thermal expansion[J]. Chemical Engineering Journal, 2021, 415: 128965. |
| 21 | REN Miao, WEN Xiaodong, GAO Xiaojian, et al. Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material[J]. Construction and Building Materials, 2021, 273: 121714. |
| 22 | LIU Lei, PENG Ben, YUE Changsheng, et al. Low-cost, shape-stabilized fly ash composite phase change material synthesized by using a facile process for building energy efficiency[J]. Materials Chemistry and Physics, 2019, 222: 87-95. |
| 23 | HUANG Xiubing, CHEN Xiao, LI Ang, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. |
| 24 | LIU Peng, GU Xiaobin, BIAN Liang, et al. Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(1): 359-368. |
| 25 | ATINAFU Dimberu G, DONG Wenjun, BERARDI Umberto, et al. Phase change materials stabilized by porous metal supramolecular gels: Gelation effect on loading capacity and thermal performance[J]. Chemical Engineering Journal, 2020, 394: 124806. |
| 26 | SU Weiguang, HU Meiyong, WANG Li, et al. Microencapsulated phase change materials with graphene-based materials: Fabrication, characterisation and prospects[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112806. |
| 27 | LI Min, GUO Qiangang, SU Yongli. The thermal conductivity improvements of phase change materials using modified carbon nanotubes[J]. Diamond and Related Materials, 2022, 125: 109023. |
| 28 | CHIU Yu-Jen, YAN Wei-Mon, CHIU Han-Chieh, et al. Investigation on the thermophysical properties and transient heat transfer characteristics of composite phase change materials[J]. International Communications in Heat and Mass Transfer, 2018, 98: 223-231. |
| 29 | FAN Zhixuan, ZHAO Yunchao, DING Yufei, et al. Fabrication and comprehensive analysis of expanded perlite impregnated with myristic acid-based phase change materials as composite materials for building thermal management[J]. Journal of Energy Storage, 2022, 55: 105710. |
| 30 | REKA Arianit A, PAVLOVSKI Blagoj, FAZLIJA Emira, et al. Diatomaceous Earth: Characterization, thermal modification, and application[J]. Open Chemistry, 2021, 19(1): 451-461. |
| 31 | ZHAO Xiaoguang, TANG Yili, XIE Weimin, et al. 3D hierarchical porous expanded perlite-based composite phase-change material with superior latent heat storage capability for thermal management[J]. Construction and Building Materials, 2023, 362: 129768. |
| 32 | Ahmet SARı, SHARMA R K, Gökhan HEKIMOĞLU, et al. Preparation, characterization, thermal energy storage properties and temperature control performance of form-stabilized sepiolite based composite phase change materials[J]. Energy and Buildings, 2019, 188: 111-119. |
| 33 | CHUNG Okyoung, JEONG Su-Gwang, KIM Sumin. Preparation of energy efficient paraffinic PCMs/expanded vermiculite and perlite composites for energy saving in buildings[J]. Solar Energy Materials and Solar Cells, 2015, 137: 107-112. |
| 34 | WANG Fuxian, GAO Shiyuan, PAN Jiachuan, et al. Short-chain modified SiO2 with high absorption of organic PCM for thermal protection[J]. Nanomaterials, 2019, 9(4): 657. |
| 35 | CHEN Feixu, ZHANG Yihe, LIU Jingang, et al. Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: Towards low thermal conductivity[J]. Construction and Building Materials, 2020, 249: 118728. |
| 36 | 张寅平, 苏跃红, 葛新石. (准)共晶系相变材料融点及融解热的理论预测[J]. 中国科学技术大学学报, 1995, 25(4): 474-478. |
| ZHANG Yinping, SU Yuehong, GE Xinshi. Theoretical prediction of melting point and melting heat of (quasi-) eutectic phase change materials[J]. Journal of University of Science and Technology of China, 1995, 25(4): 474-478. | |
| 37 | GENOVESE A, AMARASINGHE G, GLEWIS M, et al. Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material[J]. Thermochimica Acta, 2006, 443(2): 235-244. |
| 38 | FENG Lili, ZHENG Jie, YANG Huazhe, et al. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials[J]. Solar Energy Materials and Solar Cells, 2011, 95(2): 644-650. |
| 39 | QIAN Tingting, LI Jinhong, MA Hongwen, et al. The preparation of a green shape-stabilized composite phase change material of polyethylene glycol/SiO2 with enhanced thermal performance based on oil shale ash via temperature-assisted sol-gel method[J]. Solar Energy Materials and Solar Cells, 2015, 132: 29-39. |
| 40 | YU Shiyu, WANG Xiaodong, WU Dezhen. Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation[J]. Applied Energy, 2014, 114: 632-643. |
| 41 | LUO Yue, XIONG Suya, HUANG Jintao, et al. Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 231: 111300. |
| 42 | LI Chuanchang, FU Liangjie, OUYANG Jing, et al. Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage[J]. Scientific Reports, 2013, 3: 1908. |
| 43 | SHEN Qiang, LIU Songyang, OUYANG Jing, et al. Sepiolite supported stearic acid composites for thermal energy storage[J]. RSC Advances, 2016, 6(113): 112493-112501. |
| 44 | KARAIPEKLI Ali, Ahmet SARı. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage[J]. Solar Energy, 2009, 83(3): 323-332. |
| 45 | WANG Yi, ZHENG Han, FENG Huixia, et al. Effect of preparation methods on the structure and thermal properties of stearic acid/activated montmorillonite phase change materials[J]. Energy and Buildings, 2012, 47: 467-473. |
| 46 | KONUKLU Yeliz, ERSOY Orkun. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage[J]. Applied Thermal Engineering, 2016, 107: 575-582. |
| 47 | CAI Yibing, SUN Guiyan, LIU Mengmeng, et al. Fabrication and characterization of capric-lauric-palmitic acid/electrospun SiO2 nanofibers composite as form-stable phase change material for thermal energy storage/retrieval[J]. Solar Energy, 2015, 118: 87-95. |
| 48 | ZHANG Nan, YUAN Yanping, YUAN Yaguang, et al. Lauric-palmitic-stearic acid/expanded perlite composite as form-stable phase change material: Preparation and thermal properties[J]. Energy and Buildings, 2014, 82: 505-511. |
| 49 | ZHANG Nan, YUAN Yanping, LI Tianyu, et al. Study on thermal property of lauric-palmitic-stearic acid/vermiculite composite as form-stable phase change material for energy storage[J]. Advances in Mechanical Engineering, 2015, 7(9): 168781401560502. |
| [1] | YIN Shaowu, HUANG Ruoxiao, ZAN Xiaojun, TONG Lige, LIU Chuanping, WANG Li. Design of phase-change heat and energy storage system based on CPCM hexagonal and simulation of heat storage and release [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 243-254. |
| [2] | HE Ruiqiang, FANG Min, ZHOU Jianduo, FEI Hua, YANG Kai. Research progress of TPE-based flexible composite phase change materials for thermal management of lithium batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3159-3173. |
| [3] | LIANG Ximei, FEI Hua, LI Yuanlin, YONG Fan, GUO Mengqian, ZHOU Jiahong. Preparation and thermal properties of lauric acid-based binary low compatible energy storage materials [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3256-3267. |
| [4] | SUN Wenjin, WANG Xuemei, LI Zifu. Influencing factors of directional acid production by anaerobic fermentation of food waste [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5778-5790. |
| [5] | QUAN Cui, CHEN Changxiang, GAO Ningbo, LU Lifang. Effects of surfactants and polylactic acid plastic on characteristics of food waste acidogenic fermentation [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5791-5804. |
| [6] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
| [7] | ZHAO Xipo, BIAN Wuxun, RAN Baoqing, LIU Jinchao, YIN Shaoding, SUN Yiming. Preparation and properties of paraffin solid-solid phase change materials [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 897-906. |
| [8] | MA Yue, WANG Qinyan, JIN Yang. Esterification of free fatty acids in a twist plug-in microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6191-6196. |
| [9] | FANG Qiang, ZHAO Ming. Synergy of cooling system of liquid-cooled phase change material composite battery [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6278-6285. |
| [10] | HUANG Longteng, QI Yingxia, WANG Yucheng, JIANG Shengjun. Battery heat dissipation performance based on composite phase change material-heat pipe [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5680-5688. |
| [11] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing aliphatic acids via pressurized hydrolysis of soapstock assisted by ultrasound [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 409-416. |
| [12] | YANG Zhe, LIU Fei, ZHANG Tao, DENG Xing, ZHANG Zhengwen. Numerical simulation and experiment of heat storage process of TPMS porous aluminum-paraffin composite phase change material [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4918-4927. |
| [13] | LI Qi, CHENG Zefang, BAI Miao, HU Pengfei. Melting characteristics of high porosity copper foam reinforced phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4928-4936. |
| [14] | WANG Enhua, JIN Lili, GAO Shanbin, CHI Kebin, DUAN Aijun. Development of catalyst for n-paraffins hydroisomerization [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2967-2980. |
| [15] | HAN Jingjing, TAN Juan, LIU Jing, LIU Yu. Controllable synthesis of small size ZSM-22 zeolites and their performance in the production of bio-jet fuel by hydrocracking and hydroisomerization of long-chain normal bio-paraffins [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1916-1924. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |