Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4571-4586.DOI: 10.16085/j.issn.1000-6613.2023-1092
• Resources and environmental engineering • Previous Articles
ZHANG Lei(), DU Hongying, FENG Wenhao, GUO Junkang
Received:
2023-06-30
Revised:
2023-09-05
Online:
2024-09-02
Published:
2024-08-15
Contact:
ZHANG Lei
通讯作者:
张蕾
作者简介:
张蕾(1991—),女,硕士生导师,研究方向为纳米技术及膜分离。E-mail:zhanglei0954@126.com。
基金资助:
CLC Number:
ZHANG Lei, DU Hongying, FENG Wenhao, GUO Junkang. Optimization of interfacial solar photothermal evaporation system based on two-dimensional photothermal materials[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4571-4586.
张蕾, 杜红英, 冯文浩, 郭军康. 基于二维光热材料的界面太阳能光热蒸发系统优化[J]. 化工进展, 2024, 43(8): 4571-4586.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1092
蒸发体形态 | 光热材料 | 光强/kW·m-2 | 蒸发速率/kg·m-2·h-1 | 能量转换效率/% | 参考文献 |
---|---|---|---|---|---|
膜(涂层) | 氧化石墨烯 | 1 | 1.45 | 78 | [ |
碳纳米管 | 1 | 1.37 | 87.4 | [ | |
石墨烯 | 1 | 1.62 | 86.5 | [ | |
还原氧化石墨烯 | 1 | 1.14 | 89.2 | [ | |
2层二硫化钼 | 1 | 1.68±0.08 | 83.8 | [ | |
疏水碳化钛 | 1 | 1.31 | 71 | [ | |
仿生蛇皮碳化钛 | 1 | 1.33 | 86.7 | [ | |
镍-MOFs | 1 | 2.07 | 91.5 | [ | |
PVDF/二硫化钨 | 3 | 4.15 | 94.2 | [ | |
CB/PMMA-PAN | 1 | 1.3 | 72 | [ | |
二氧化钛 | 1 | 1.13 | 70.9 | [ | |
单壁碳纳米管-二硫化钼 | 5 | 6.6 | 91.5 | [ | |
气凝胶 | 二硫化钼 | 1 | 1.27 | 88.0 | [ |
1.5 | 1.95 | 90.5 | |||
2.0 | 2.64 | 92.1 | |||
3.0 | 4.05 | 95.3 | |||
PC@PDA-C | 1 | 2.13 | 94.5 | [ | |
玉米秸秆/石墨烯 | 1 | 2.71 | 85 | [ | |
N掺杂玉米秸秆石墨烯 | 1 | 3.22 | 95 | ||
N掺杂环形石墨烯 | 1 | 2.53 | 90.3 | [ | |
纳米Au-PVA | 1 | 2.7 | 79.3 | [ | |
C-PVA | 1 | 2.1 | 89.8 | [ | |
水凝胶 | HHEs | 1 | 3.2 | 90 | [ |
h-LAH | 1 | 3.6 | 92 | [ | |
SMoS2-PH | 1 | 3.297 | 93.4 | [ | |
Ti3C2T x MXene/rGO | 1 | 3.62 | 91 | [ | |
HNG | 1 | 3.2 | 94 | [ | |
SPJH | 1 | 4.18 | 95 | [ | |
IPNG | 1 | 3.9 | 92 | [ | |
COF/GO | 1 | 3.69 | 92 | [ | |
BBH-L | 1 | 4.37 | 98.2 | [ |
蒸发体形态 | 光热材料 | 光强/kW·m-2 | 蒸发速率/kg·m-2·h-1 | 能量转换效率/% | 参考文献 |
---|---|---|---|---|---|
膜(涂层) | 氧化石墨烯 | 1 | 1.45 | 78 | [ |
碳纳米管 | 1 | 1.37 | 87.4 | [ | |
石墨烯 | 1 | 1.62 | 86.5 | [ | |
还原氧化石墨烯 | 1 | 1.14 | 89.2 | [ | |
2层二硫化钼 | 1 | 1.68±0.08 | 83.8 | [ | |
疏水碳化钛 | 1 | 1.31 | 71 | [ | |
仿生蛇皮碳化钛 | 1 | 1.33 | 86.7 | [ | |
镍-MOFs | 1 | 2.07 | 91.5 | [ | |
PVDF/二硫化钨 | 3 | 4.15 | 94.2 | [ | |
CB/PMMA-PAN | 1 | 1.3 | 72 | [ | |
二氧化钛 | 1 | 1.13 | 70.9 | [ | |
单壁碳纳米管-二硫化钼 | 5 | 6.6 | 91.5 | [ | |
气凝胶 | 二硫化钼 | 1 | 1.27 | 88.0 | [ |
1.5 | 1.95 | 90.5 | |||
2.0 | 2.64 | 92.1 | |||
3.0 | 4.05 | 95.3 | |||
PC@PDA-C | 1 | 2.13 | 94.5 | [ | |
玉米秸秆/石墨烯 | 1 | 2.71 | 85 | [ | |
N掺杂玉米秸秆石墨烯 | 1 | 3.22 | 95 | ||
N掺杂环形石墨烯 | 1 | 2.53 | 90.3 | [ | |
纳米Au-PVA | 1 | 2.7 | 79.3 | [ | |
C-PVA | 1 | 2.1 | 89.8 | [ | |
水凝胶 | HHEs | 1 | 3.2 | 90 | [ |
h-LAH | 1 | 3.6 | 92 | [ | |
SMoS2-PH | 1 | 3.297 | 93.4 | [ | |
Ti3C2T x MXene/rGO | 1 | 3.62 | 91 | [ | |
HNG | 1 | 3.2 | 94 | [ | |
SPJH | 1 | 4.18 | 95 | [ | |
IPNG | 1 | 3.9 | 92 | [ | |
COF/GO | 1 | 3.69 | 92 | [ | |
BBH-L | 1 | 4.37 | 98.2 | [ |
1 | QIN Yue, MUELLER Nathaniel D, SIEBERT Stefan, et al. Flexibility and intensity of global water use[J]. Nature Sustainability, 2019, 2(6): 515-523. |
2 | MAUTER Meagan S, FISKE Peter S. Desalination for a circular water economy[J]. Energy & Environmental Science, 2020, 13(10): 3180-3184. |
3 | YANG Peihua, LIU Kang, CHEN Qian, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science, 2017, 10(9): 1923-1927. |
4 | ZHAO Liyuan, TIAN Jing, LIU Yangkaixi, et al. A novel floatable composite hydrogel for solar evaporation enhancement[J]. Environmental Science: Water Research & Technology, 2020, 6(1): 221-230. |
5 | DESHMUKH Akshay, Chanhee BOO, KARANIKOLA Vasiliki, et al. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges[J]. Energy & Environmental Science, 2018, 11(5): 1177-1196. |
6 | ULIANA Adam A, Ngoc T BUI, KAMCEV Jovan, et al. Ion-capture electrodialysis using multifunctional adsorptive membranes[J]. Science, 2021, 372(6539): 296-299. |
7 | WANG Xueyang, LI Xiuqiang, LIU Guoliang, et al. An interfacial solar heating assisted liquid sorbent atmospheric water generator[J]. Angewandte Chemie, 2019, 58(35): 12054-12058. |
8 | Taikan OKI, KANAE Shinjiro. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072. |
9 | WU Xuan, ROBSON Max Edward, PHELPS Jack Leslie, et al. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation[J]. Nano Energy, 2019, 56: 708-715. |
10 | CHEN Meiling, WU Yufeng, SONG Weixing, et al. Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation[J]. Nanoscale, 2018, 10(13): 6186-6193. |
11 | CHEN Chaoji, KUANG Yudi, HU Liangbing. Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3): 683-718. |
12 | Young-Shin JUN, WU Xuanhao, GHIM Deoukchen, et al. Photothermal membrane water treatment for two worlds[J]. Accounts of Chemical Research, 2019, 52(5): 1215-1225. |
13 | GUEYMARD Christian A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models[J]. Solar Energy, 2004, 76(4): 423-453. |
14 | ZHU Lin, SUN Lei, ZHANG Hong, et al. Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination[J]. Nano Energy, 2019, 57: 842-850. |
15 | SHI Chenjing, LIU Zijie, TIAN Zhen, et al. Fabrication of 3D MXene@graphene hydrogel with high ion accessibility via Al-induced self-assembly and reduction for high-performance supercapacitors[J]. Electrochimica Acta, 2023, 464: 142892-142899. |
16 | YANG He, SUN Yinghui, PENG Meiwen, et al. Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity[J]. ACS Nano, 2022, 16(2): 2511-2520. |
17 | WILSON Higgins M, Hyeong Woo LIM, LEE Sang Joon. Highly efficient and salt-rejecting poly(vinyl alcohol) hydrogels with excellent mechanical strength for solar desalination[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 47800-47809. |
18 | LI Renyuan, ZHANG Lianbin, SHI Le, et al. MXene Ti3C2: An effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): 3752-3759. |
19 | MUSTAKEEM Mustakeem, EL-DEMELLAWI Jehad K, OBAID M, et al. MXene-coated membranes for autonomous solar-driven desalination[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5265-5274. |
20 | XU Chengjian, GAO Mengyue, YU Xiaoxiao, et al. Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation[J]. Nano-Micro Letters, 2023, 15(1): 64-82. |
21 | ZHANG He, LUO Wenmei, DU Yuping, et al. The g-C3N4 decorated carbon aerogel with integrated solar steam generation and photocatalysis for effective desalination and water purification[J]. Desalination, 2023, 564: 116821-116830. |
22 | LIN Xuliang, WANG Ping, HONG Ruitong, et al. Fully lignocellulosic biomass‐based double‐layered porous hydrogel for efficient solar steam generation[J]. Advanced Functional Materials, 2022, 32(51): 2209262-2209273. |
23 | HE Nan, YANG Yongfang, WANG Haonan, et al. Ion-transfer engineering via Janus hydrogels enables ultrahigh performance and salt-resistant solar desalination[J]. Advanced Materials, 2023, 35(24): 2300189. |
24 | LIU Pan, HU Yibo, LI Xiaoying, et al. Enhanced solar evaporation using a scalable MoS2-Based hydrogel for highly efficient solar desalination[J]. Angewandte Chemie, 2022, 61(37): e202208587. |
25 | ZHAO Jianqiu, YANG Yawei, YANG Chenhui, et al. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination[J]. Journal of Materials Chemistry A, 2018, 6(33): 16196-16204. |
26 | CHEN Rong, WANG Xun, GAN Qimao, et al. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection[J]. Journal of Materials Chemistry A, 2019, 7(18): 11177-11185. |
27 | ZHENG Siyu, ZHOU Jiahui, SI Mengjie, et al. A molecularly engineered zwitterionic hydrogel with strengthened anti-polyelectrolyte effect: From high-rate solar desalination to efficient electricity generation[J]. Advanced Functional Materials, 2023, 33(43): 2303272. |
28 | WANG Xuechun, ZHANG Linjiang, ZHENG Dan, et al. A polyelectrolyte hydrogel coated loofah sponge evaporator based on Donnan effect for highly efficient solar-driven desalination[J]. Chemical Engineering Journal, 2023, 462: 142265-142275. |
29 | WANG Zhongyi, ZHU Yingjie, CHEN Yuqiao, et al. Bioinspired aerogel with vertically ordered channels and low water evaporation enthalpy for high‐efficiency salt‐rejecting solar seawater desalination and wastewater purification[J]. Small, 2023, 19(19): 2206917. |
30 | LEI Chuxin, PARK Jungjoon, GUAN Weixin, et al. Biomimetically assembled sponge‐like hydrogels for efficient solar water purification[J]. Advanced Functional Materials, 2023, 33(38): 2303883. |
31 | LI Lin, HE Nan, JIANG Bo, et al. Highly salt‐resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization[J]. Advanced Functional Materials, 2021, 31(43): 2104380. |
32 | XU Zhenyuan, ZHANG Lenan, ZHAO Lin, et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still[J]. Energy & Environmental Science, 2020, 13(3): 830-839. |
33 | TANG Jiebin, ZHENG Tao, SONG Zhaoping, et al. Realization of low latent heat of a solar evaporator via regulating the water state in wood channels[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18504-18511. |
34 | XU Zhourui, LI Zida, JIANG Yihang, et al. Recent advances in solar-driven evaporation systems[J]. Journal of Materials Chemistry A, 2020, 8(48): 25571-25600. |
35 | ZHANG Panpan, LI Jing, Lingxiao LYU, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano, 2017, 11(5): 5087-5093. |
36 | GUO Ankang, MING Xin, FU Yang, et al. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29958-29964. |
37 | ZHANG Lei, MU Li, ZHOU Qixing, et al. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination[J]. Water Research, 2020, 170: 115367-115377. |
38 | LI Kerui, CHANG Ting‐Hsiang, LI Zhipeng, et al. Biomimetic MXene textures with enhanced light‐to‐heat conversion for solar steam generation and wearable thermal management[J]. Advanced Energy Materials, 2019, 9(34): 1901687. |
39 | YU Yaolun, CHEN Sai, JIA Yi, et al. Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification[J]. Carbon, 2020, 169: 134-141. |
40 | SU Yiru, LIU Lang, GAO Xuechao, et al. A high-efficient and salt-rejecting 2D film for photothermal evaporation[J]. iScience, 2023: 107347-107359. |
41 | YANG Xiangdong, YANG Yanbing, FU Linna, et al. An ultrathin flexible 2D membrane based on single‐walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials, 2018, 28(3): 1704505-1704514. |
42 | GHIDIU Michael, LUKATSKAYA Maria R, ZHAO Mengqiang, et al. Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
43 | ZHA Xiangjun, ZHAO Xing, PU Junhong, et al. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36589-36597. |
44 | WEI Zechang, CAI Chenyang, HUANG Yangze, et al. Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation[J]. Nano Energy, 2021, 86: 106138-106152. |
45 | MENG Xiangyu, YANG Jianhui, RAMAKRISHNA Seeram, et al. Gradient vertical channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(12): 4955-4965. |
46 | LIU Zhiwu, QING Renkun, XIE Anquan, et al. Self-contained janus aerogel with antifouling and salt-rejecting properties for stable solar evaporation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18829-18837. |
47 | LI Wei, TIAN Xiaohan, LI Xiaofeng, et al. Ultrahigh solar steam generation rate of a vertically aligned reduced graphene oxide foam realized by dynamic compression[J]. Journal of Materials Chemistry A, 2021, 9(26): 14859-14867. |
48 | KONG Yan, DAN Hongbing, KONG Wenjia, et al. Self-floating maize straw/graphene aerogel synthesis based on microbubble and ice crystal templates for efficient solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A, 2020, 8(46): 24734-24742. |
49 | ZHANG Lei, HU Xiangang, ZHOU Qixing. Sunlight-assisted tailoring of surface nanostructures on single-layer graphene nanosheets for highly efficient cation capture and high-flux desalination[J]. Carbon, 2020, 161: 674-684. |
50 | CAO Pei, ZHAO Liming, ZHANG Jian, et al. Gradient heating effect modulated by hydrophobic/hydrophilic carbon nanotube network structures for ultrafast solar steam generation[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 19109-19116. |
51 | ZHANG Chaofan, YUAN Baohua, LIANG Ying, et al. Solar vapor generator: A natural all-in-one 3D system derived from cattail[J]. Solar Energy Materials and Solar Cells, 2021, 227: 111127-111136. |
52 | WANG Qingmiao, GUO Qijing, JIA Feifei, et al. Facile preparation of three-dimensional MoS2 aerogels for highly efficient solar desalination[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32673-32680. |
53 | FERREIRA-NETO Elias P, ULLAH Sajjad, SILVA Thais C A DA, et al. Bacterial nanocellulose/MoS2 hybrid aerogels as bifunctional adsorbent/photocatalyst membranes for in-flow water decontamination[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41627-41643. |
54 | ZHANG Qi, YI Gang, FU Ze, et al. Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance[J]. ACS Nano, 2019, 13(11): 13196-13207. |
55 | HAN Xinhong, DING Shaoqiu, FAN Liwu, et al. Janus biocomposite aerogels constituted of cellulose nanofibrils and MXenes for application as single-module solar-driven interfacial evaporators[J]. Journal of Materials Chemistry A, 2021, 9(34): 18614-18622. |
56 | ZHAO Xing, PENG Limei, TANG Chunyan, et al. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels[J]. Materials Horizons, 2020, 7(3): 855-865. |
57 | ZHANG Lei, DU Hongying, WANG Jiayuan, et al. Gas foaming guided fabrication of hydrogel beads with controlled phase and porous structure for durable and highly efficient solar-powered water purification[J]. Chemical Engineering Journal, 2023, 473: 145338-145349. |
58 | AHMED Enas M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research, 2015, 6(2): 105-121. |
59 | SHIRSATH Sachin R, PATIL Anup P, PATIL Rohit, et al. Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with Kaolin clay: A comparative study[J]. Ultrasonics Sonochemistry, 2013, 20(3): 914-923. |
60 | LI Zhiyong, SU Yunlan, XIE Baoquan, et al. A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped[J]. Journal of Materials Chemistry B, 2015, 3(9): 1769-1778. |
61 | YANG Jun, GONG Cheng, SHI Fukuan, et al. High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: Role of chain architecture on hydrogel properties[J]. The Journal of Physical Chemistry B, 2012, 116(39): 12038-12047. |
62 | ZHAO Fei, ZHOU Xingyi, SHI Ye, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels[J]. Nature Nanotechnology, 2018, 13(6): 489-495. |
63 | ZHOU Xingyi, ZHAO Fei, GUO Youhong, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances, 2019, 5(6): eaaw5484-eaaw5492. |
64 | ZHOU Xingyi, GUO Youhong, ZHAO Fei, et al. Topology‐controlled hydration of polymer network in hydrogels for solar‐driven wastewater treatment[J]. Advanced Materials, 2020, 32(52): e2007012. |
65 | LU Yi, FAN Deqi, WANG Yida, et al. Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation[J]. ACS Nano, 2021, 15(6): 10366-10376. |
66 | HONG Seunghyun, SHI Yusuf, LI Renyuan, et al. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28517-28524. |
67 | WANG Xu, LIU Qingchang, WU Siyao, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials, 2019, 31(19): e1807716. |
68 | MA Cheng, LIU Qiaoling, PENG Qianqian, et al. Biomimetic hybridization of Janus-like graphene oxide into hierarchical porous hydrogels for improved mechanical properties and efficient solar desalination devices[J]. ACS Nano, 2021, 15(12): 19877-19887. |
69 | LIU Xinghang, CHEN Feixiang, LI Yuankai, et al. 3D hydrogel evaporator with vertical radiant vessels breaking the trade‐off between thermal localization and salt resistance for solar desalination of high-salinity[J]. Advanced Materials, 2022, 34(36): e2203137. |
70 | LIU Xiaojie, TIAN Yanpei, WU Yanzi, et al. Seawater desalination derived entirely from ocean biomass[J]. Journal of Materials Chemistry A, 2021, 9(39): 22313-22324. |
71 | TIAN Yanpei, LIU Xiaojie, XU Shilin, et al. Recyclable and efficient ocean biomass-derived hydrogel photothermal evaporator for thermally-localized solar desalination[J]. Desalination, 2022, 523: 115449-115459. |
72 | ZHANG He, LI Xiaoke, ZHENG Size, et al. The coral‐inspired steam evaporator for efficient solar desalination via porous and thermal insulation bionic design[J]. SmartMat, 2023, 4(6): e1175-e1187. |
73 | SHI Yusuf, ZHANG Chenlin, LI Renyuan, et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology, 2018, 52(20): 11822-11830. |
74 | LU Yi, FAN Deqi, XU Haolan, et al. Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification[J]. Solar RRL, 2020, 4(9): 2000232-20000244. |
75 | SONG Xiaoying, SONG Hucheng, WANG Sheng, et al. Enhancement of solar vapor generation by a 3D hierarchical heat trapping structure[J]. Journal of Materials Chemistry A, 2019, 7(46): 26496-26503. |
76 | LI Xiuqiang, XU Weichao, TANG Mingyao, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953-13958. |
77 | HE Panpan, HAO Liang, LIU Ning, et al. Controllable synthesis of sea urchin-like carbon from metal-organic frameworks for advanced solar vapor generators[J]. Chemical Engineering Journal, 2021, 423: 130268-130280. |
78 | WEI Na, LI Zhenkui, LI Qi, et al. Scalable and low-cost fabrication of hydrophobic PVDF/WS2 porous membrane for highly efficient solar steam generation[J]. Journal of Colloid and Interface Science, 2021, 588: 369-377. |
79 | XU Weichao, HU Xiaozhen, ZHUANG Shendong, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884-1702891. |
80 | ZHU Guilian, XU Jijian, ZHAO Wenli, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31716-31721. |
81 | LIU Ye, LIU Huijie, XIONG Jian, et al. Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation[J]. Chemical Engineering Journal, 2022, 427: 131539-131548. |
82 | HUANG Zhongming, LI Shengliang, CUI Xiao, et al. A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2020, 8(21): 10742-10746. |
83 | YANG Jianming, WANG Hongqiang, ZHOU Bin, et al. Versatile direct writing of aerogel-based sol-gel inks[J]. Langmuir, 2021, 37(6): 2129-2139. |
84 | GUO Youhong, LU Hengyi, ZHAO Fei, et al. Biomass‐derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Advanced Materials, 2020, 32(11): e1907061. |
85 | LI Changxia, CAO Sijia, LUTZKI Jana, et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation[J]. Journal of the American Chemical Society, 2022, 144(7): 3083-3090. |
[1] | ZHENG Yunxiang, GAO Yilun, LI Yanru, LIU Qinglin, ZHANG Haoteng, WANG Xiangpeng. Preparation and adsorption properties of porous double-network hydrogels modified by nitrilotriacetic acid anhydride [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4542-4549. |
[2] | XIE Mengmeng, LIU Jian, DANG Rui, LI Meixin, LIN Xiaoting, SU Zhou, WANG Jie. Preparation of ionic conductive hydrogels and its applications in flexible electronic [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3128-3144. |
[3] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[4] | LIU Mengmeng, QIU Liewei, WAN Zhiwei, LI Shijing, XU Yuyu. Design principle and application of self-healing hydrogel [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1350-1362. |
[5] | WANG Yansen, HOU Dandan, LI Changjin, QI Liya, WANG Chunyao, GUO Min, WANG Ying. Preparation and properties of graphene oxide/polyacrylic acid conductive and adhesive hydrogels [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1022-1032. |
[6] | JU Fang. Fabrication and properties of synergistic antibacterial hydrogels based on the silver-sulfur coordination [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1039-1046. |
[7] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[8] | ZHANG Tingting, PAN Dawei, JU Xiaojie, LIU Zhuang, XIE Rui, WANG Wei, CHU Liangyin. Fabrication and performance of Hg2+-responsive smart hydrogel grating detector [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4143-4152. |
[9] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[10] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[11] | FENG Wanqi, HANISHA·Bhahti , GE Yuxuan, ZHAO Jianbo. Preparation and properties of magnetic polyaspartic acid/polyacrylamide semi-interpenetrating hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3130-3137. |
[12] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[13] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[14] | DU Tao, MA Jinwei, CHEN Qianqian, FANG Hao, CHEN Bingzhang, CHEN Houren. Comparison test and numerical simulation analysis of PV/T module composite cooling mode [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 722-730. |
[15] | ZHANG He, LI Xiaoke, XIONG Ying, WEN Jin. Desalination and pollution treatment of fracturing flow-back fluid based on interfacial solar evaporation of hydrogel [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1073-1079. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |