Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4477-4489.DOI: 10.16085/j.issn.1000-6613.2023-1096
• Materials science and technology • Previous Articles
WANG Yang1(), ZHANG Miaomiao1, LYU Yang1, HOU Cuihong2, WEI Changzhou3, MA Wenqi4, ZHANG Fusuo1, SHEN Jianbo1()
Received:
2023-07-02
Revised:
2023-08-05
Online:
2024-09-02
Published:
2024-08-15
Contact:
SHEN Jianbo
王洋1(), 张苗苗1, 吕阳1, 侯翠红2, 危常州3, 马文奇4, 张福锁1, 申建波1()
通讯作者:
申建波
作者简介:
王洋(1997—),男,博士研究生,研究方向为绿色智能肥料创新。E-mail:b20223030281@cau.edu.cn。
基金资助:
CLC Number:
WANG Yang, ZHANG Miaomiao, LYU Yang, HOU Cuihong, WEI Changzhou, MA Wenqi, ZHANG Fusuo, SHEN Jianbo. pH-responsive materials and their applications in intelligent fertilizer[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4477-4489.
王洋, 张苗苗, 吕阳, 侯翠红, 危常州, 马文奇, 张福锁, 申建波. pH响应材料及其在智能肥料中的应用[J]. 化工进展, 2024, 43(8): 4477-4489.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1096
分类 | pH响应材料 | pKa(25℃) | pH响应范围 | 材料制备机理 | 成本 /CNY·t-1 | 肥料种类 | 应用 作物 | 参考文献 |
---|---|---|---|---|---|---|---|---|
聚合物材料 | 聚丙烯酸 | 4.26 | <7 | 原子转移自由基聚合 | 8190 | 双焦磷酸铜钾三水合物 | 无 | [ |
N, N-甲基丙烯酸二甲氨基乙酯 | 7.4 | <7 | 原子转移自由基聚合 | 21000 | 磷酸锌铵 | 无 | [ | |
天然高分子材料 | 海藻酸 | 3~4.22 | <6 | 原位自由基聚合 | 176000 | 尿素、磷酸二氢钾和 磷酸二氢铵 | 无 | [ |
壳聚糖 | 6.5 | <5 | — | 19500 | FeSO4·7H2O | 番茄 | [ | |
羧甲基纤维素钠 | 4.33 | 5~10 | 自由基聚合 | 4800 | 尿素 | 小麦 | [ | |
木质素-Fe | — | <7 | 配位聚合 | 120000 | 羟基磷灰石 | 玉米 | [ |
分类 | pH响应材料 | pKa(25℃) | pH响应范围 | 材料制备机理 | 成本 /CNY·t-1 | 肥料种类 | 应用 作物 | 参考文献 |
---|---|---|---|---|---|---|---|---|
聚合物材料 | 聚丙烯酸 | 4.26 | <7 | 原子转移自由基聚合 | 8190 | 双焦磷酸铜钾三水合物 | 无 | [ |
N, N-甲基丙烯酸二甲氨基乙酯 | 7.4 | <7 | 原子转移自由基聚合 | 21000 | 磷酸锌铵 | 无 | [ | |
天然高分子材料 | 海藻酸 | 3~4.22 | <6 | 原位自由基聚合 | 176000 | 尿素、磷酸二氢钾和 磷酸二氢铵 | 无 | [ |
壳聚糖 | 6.5 | <5 | — | 19500 | FeSO4·7H2O | 番茄 | [ | |
羧甲基纤维素钠 | 4.33 | 5~10 | 自由基聚合 | 4800 | 尿素 | 小麦 | [ | |
木质素-Fe | — | <7 | 配位聚合 | 120000 | 羟基磷灰石 | 玉米 | [ |
15 | ZHANG Yu Shrike, KHADEMHOSSEINI Ali. Advances in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627. |
16 | KOCAK G, TUNCER C, BÜTÜN V. pH-responsive polymers[J]. Polymer Chemistry, 2017, 8(1): 144-176. |
17 | OFRIDAM Fabrice, TARHINI Mohamad, LEBAZ Noureddine, et al. pH-sensitive polymers: Classification and some fine potential applications[J]. Polymers for Advanced Technologies, 2021, 32(4): 1455-1484. |
18 | WEI Menglian, GAO Yongfeng, LI Xue, et al. Stimuli-responsive polymers and their applications[J]. Polymer Chemistry, 2017, 8(1): 127-143. |
19 | LI Qingsi, WEN Chiyu, YANG Jing, et al. Zwitterionic biomaterials[J]. Chemical Reviews, 2022, 122(23): 17073-17154. |
20 | FELBER Arnaud E, DUFRESNE Marie-Hélène, LEROUX Jean-Christophe. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates[J]. Advanced Drug Delivery Reviews, 2012, 64(11): 979-992. |
21 | MONGE Sophie, CANNICCIONI Benjamin, DAVID Ghislain, et al. CHAPTER 1. Polymerization of phosphorus-containing (meth)acrylate monomers[M]// Polymer Chemistry Series. Cambridge: Royal Society of Chemistry, 2014: 1-18. |
22 | GABASTON L I, FURLONG S A, JACKSON R A, et al. Direct synthesis of novel acidic and zwitterionic block copolymers via TEMPO-mediated living free-radical polymerization[J]. Polymer, 1999, 40(16): 4505-4514. |
23 | LIU Miaomiao, SU Haijia, TAN Tianwei. Synthesis and properties of thermo- and pH-sensitive poly(N-isopropylacrylamide)/ polyaspartic acid IPN hydrogels[J]. Carbohydrate Polymers, 2012, 87(4): 2425-2431. |
24 | RAO Jingyi, ZHANG Yanfeng, ZHANG Jingyan, et al. Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry[J]. Biomacromolecules, 2008, 9(10): 2586-2593. |
25 | GUAN Ying, ZHANG Yongjun. Boronic acid-containing hydrogels: Synthesis and their applications[J]. Chemical Society Reviews, 2013, 42(20): 8106-8121. |
26 | XU Chengyuan, YAN Yunfeng, TAN Jinchao, et al. Biodegradable nanoparticles of polyacrylic acid-stabilized amorphous CaCO3 for tunable pH-responsive drug delivery and enhanced tumor inhibition[J]. Advanced Functional Materials, 2019, 29(24): 1808146. |
27 | CHEN Hao, YANG Jie, SUN Lin, et al. Synergistic chemotherapy and photodynamic therapy of endophthalmitis mediated by zeolitic imidazolate framework-based drug delivery systems[J]. Small, 2019, 15(47): 1903880. |
28 | LUO Ruidong, DONG Jinfeng, LUO Yunbai. pH-responsive pickering emulsion stabilized by polymer-coated silica nanoaggregates and applied to recyclable interfacial catalysis[J]. RSC Advances, 2020, 10(69): 42423-42431. |
29 | XUE Ruiyang, ZHANG Wang, SUN Peng, et al. Angle-independent pH-sensitive composites with natural gyroid structure[J]. Scientific Reports, 2017, 7: 42207. |
30 | KIM Seon Jeong, LEE Chang Kee, KIM Sun I. Electrical/pH responsive properties of poly(2-acrylamido-2-methylpropane sulfonic acid)/hyaluronic acid hydrogels[J]. Journal of Applied Polymer Science, 2004, 92(3): 1731-1736. |
31 | SOHAIL Muhammad, AHMAD Mahmood, MINHAS Muhammad Usman, et al. Development and in vitro evaluation of high molecular weight chitosan based polymeric composites for controlled delivery of valsartan[J]. Advances in Polymer Technology, 2016, 35(4): 361-368. |
32 | MAZA Eliana, TUNINETTI Jimena S, POLITAKOS Nikolaos, et al. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups[J]. Physical Chemistry Chemical Physics, 2015, 17(44): 29935-29948. |
33 | HU Jinming, ZHANG Guoying, GE Zhishen, et al. Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications[J]. Progress in Polymer Science, 2014, 39(6): 1096-1143. |
34 | HAN Xia, ZHANG Xuxia, ZHU Hongfan, et al. Effect of composition of PDMAEMA-b-PAA block copolymers on their pH- and temperature-responsive behaviors[J]. Langmuir, 2013, 29(4): 1024-1034. |
35 | BÜTÜN V, ARMES S P, BILLINGHAM N C. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers[J]. Polymer, 2001, 42(14): 5993-6008. |
36 | Vural BÜTÜN, TAKTAK Fadime Fulya, TUNCER Cansel. Tertiary amine methacrylate-based ABC triblock copolymers: Synthesis, characterization, and self-assembly in both aqueous and nonaqueous media[J]. Macromolecular Chemistry and Physics, 2011, 212(11): 1115-1128. |
37 | TUNCER Cansel, SAMAV Yasemin, Damla ÜLKER, et al. Multi-responsive microgel of a water-soluble monomer via emulsion polymerization[J]. Journal of Applied Polymer Science, 2015, 132(24): e42072. |
38 | SAINI Bharti, KHUNTIA Snigdha, SINHA Manish Kumar. Incorporation of cross-linked poly(AA-co-ACMO) copolymer with pH responsive and hydrophilic properties to polysulfone ultrafiltration membrane for the mitigation of fouling behaviour[J]. Journal of Membrane Science, 2019, 572: 184-197. |
1 | 丁文成, 何萍, 周卫. 我国新型肥料产业发展战略研究[J]. 植物营养与肥料学报, 2023, 29(2): 201-221. |
DING Wencheng, HE Ping, ZHOU Wei. Development strategies of the new-type fertilizer industry in China[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 201-221. | |
2 | 何丽娟. 基于ISM的农户有机肥使用行为影响因素系统研究——以陕西省苹果种植户为例[D]. 杨凌: 西北农林科技大学, 2020. |
HE Lijuan. The systematic study on the influencing factors of farmers' use of organic fertilizer based on ISM — Taking apple growers in Shaanxi Province as an example[D]. Yangling: Northwest A & F University, 2020. | |
3 | 张福锁, 申建波, 危常州, 等. 绿色智能肥料: 从原理创新到产业化实现[J]. 土壤学报, 2022, 59(4): 873-887. |
ZHANG Fusuo, SHEN Jianbo, WEI Changzhou, et al. Green intelligent fertilizer: From interdisciplinary innovation to industrialization realization[J]. Acta Pedologica Sinica, 2022, 59(4): 873-887. | |
4 | 耿鹏, 陈道兵, 周燕, 等. 增材制造智能材料研究现状及展望[J]. 材料工程, 2022, 50(6): 12-26. |
GENG Peng, CHEN Daobing, ZHOU Yan, et al. Research status and prospect of additive manufacturing of intelligent materials[J]. Journal of Materials Engineering, 2022, 50(6): 12-26. | |
5 | COHEN STUART Martien A, HUCK Wilhelm T S, GENZER Jan, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials, 2010, 9(2): 101-113. |
6 | 王超, 李普旺, 宋书会, 等. 环境响应性高分子材料与肥料缓控释的研究进展[J]. 高分子通报, 2020 (10): 30-36. |
WANG Chao, LI Puwang, SONG Shuhui, et al. Progress in the study of environmental responsive polymer materials and controlled release of fertilizer[J]. Polymer Bulletin, 2020 (10): 30-36. | |
7 | LI Tao, Shaoyu LYU, YAN Jia, et al. An environment-friendly fertilizer prepared by layer-by-layer self-assembly for pH-responsive nutrient release[J]. ACS Applied Materials & Interfaces, 2019, 11(11): 10941-10950. |
39 | Nieves GONZÁLEZ, ELVIRA Carlos, ROMÁN Julio San. Novel dual-stimuli-responsive polymers derived from ethylpyrrolidine[J]. Macromolecules, 2005, 38(22): 9298-9303. |
40 | Roshan DEEN G, Chin Hao MAH. Influence of external stimuli on the network properties of cationic poly(N-acryloyl-N′-propyl piperazine) hydrogels[J]. Polymer, 2016, 89: 55-68. |
41 | SEIDEL J, PINKRAH V T, MITCHELL J C, et al. Isothermal titration calorimetric studies of the acid-base properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels[J]. Thermochimica Acta, 2004, 414(1): 47-52. |
42 | PINKRAH V T, SNOWDEN M J, MITCHELL J C, et al. Physicochemical properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels[J]. Langmuir, 2003, 19(3): 585-590. |
43 | MATINI Teresa, FRANCINI Nora, BATTOCCHIO Anna, et al. Synthesis and characterization of variable conformation pH responsive block co-polymers for nucleic acid delivery and targeted cell entry[J]. Polymer Chemistry, 2014, 5(5): 1626-1636. |
44 | IMAE Toyoko. Chapter 2. Physicochemical properties of dendrimers and dendrimer complexes[M]//Dendrimer-based Drug Delivery Systems: From Theory to Practice. Hoboken: Wiley, 2012: 55-92. |
45 | GODBEY W T, WU Kenneth K, MIKOS Antonios G. Poly(ethylenimine) and its role in gene delivery[J]. Journal of Controlled Release, 1999, 60(2/3): 149-160. |
46 | FAN Xiaoxing, XIE Rui, ZHAO Qian, et al. Dual pH-responsive smart gating membranes[J]. Journal of Membrane Science, 2018, 555: 20-29. |
47 | CHIKH ALARD I, SOUBHYE J, BERGER G, et al. Triple-stimuli responsive polymers with fine tuneable magnetic responses[J]. Polymer Chemistry, 2017, 8(16): 2450-2456. |
48 | ZHU Rong, SU Lichao, DAI Jiayong, et al. Biologically responsive plasmonic assemblies for second near-infrared window photoacoustic imaging-guided concurrent chemo-immunotherapy[J]. ACS Nano, 2020, 14(4): 3991-4006. |
49 | ZHANG Zhen, KONG Xiangyu, XIAO Kai, et al. A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating[J]. Advanced Materials, 2018, 30(7): 144-150. |
50 | SAINI Bharti, VAGHANI Dhwanil, KHUNTIA Snigdha, et al. A novel stimuli-responsive and fouling resistant PVDF ultrafiltration membrane prepared by using amphiphilic copolymer of poly(vinylidene fluoride) and Poly(2-N-morpholino)ethyl methacrylate[J]. Journal of Membrane Science, 2020, 603: 118047. |
8 | QIAO Dan, LI Juan, ZHANG Shuqing, et al. Controlled release fertilizer with temperature-responsive behavior coated using polyether polyol (PPG)/polycaprolactone (PCL) blend-based polyurethane performs smart nutrient release[J]. Materials Today Chemistry, 2022, 26: 101249. |
9 | BINDRA Pulkit, KAUR Kamaljit, RAWAT Ashima, et al. Nano-hives for plant stimuli controlled targeted iron fertilizer application[J]. Chemical Engineering Journal, 2019, 375: 121995. |
10 | ZHAO Fei, ZHOU Xingyi, LIU Yi, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting[J]. Advanced Materials, 2019, 31(10): e1806446. |
11 | FENG Chen, Shaoyu LYU, GAO Chunmei, et al. “Smart” fertilizer with temperature- and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3157-3166. |
12 | ZHANG Xueru, CHABOT Denise, SULTAN Yasir, et al. Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules[J]. ACS Applied Materials & Interfaces, 2013, 5(12): 5500-5507. |
13 | RAIMONDI Giorgia, MAUCIERI Carmelo, TOFFANIN Arianna, et al. Smart fertilizers: What should we mean and where should we go?[J]. Italian Journal of Agronomy, 2021, 16(2): 1794. |
14 | YOON Ho Young, PHONG Nguyen Thanh, Eun-Nam JOE, et al. Crop root exudate composition-dependent disassembly of lignin-Fe-hydroxyapatite supramolecular structures: A better rhizosphere sensing platform for smart fertilizer development[J]. Advanced Sustainable Systems, 2021, 5(8): 2100113. |
51 | EGGERS Steffen, LAUTERBACH Felix, ABETZ Volker. Synthesis and self-assembly of high molecular weight polystyrene-block-poly[2-(N-morpholino)ethyl methacrylate]: A story about microphase separation, amphiphilicity, and stimuli-responsivity[J]. Polymer, 2016, 107: 357-367. |
52 | LIU Qingsheng, SINGH Anuradha, LIU Lingyun. Amino acid-based zwitterionic poly(serine methacrylate) as an antifouling material[J]. Biomacromolecules, 2013, 14(1): 226-231. |
53 | WU Yang, RAJU Cheerlavancha, HOU Zheng, et al. Mixed-charge pseudo-zwitterionic copolymer brush as broad spectrum antibiofilm coating[J]. Biomaterials, 2021, 273: 120794. |
54 | RIZWAN Muhammad, YAHYA Rosiyah, HASSAN Aziz, et al. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications[J]. Polymers, 2017, 9(4): 137. |
55 | SAMALENS François, THOMAS Martin, CLAVERIE Marion, et al. Progresses and future prospects in biodegradation of marine biopolymers and emerging biopolymer-based materials for sustainable marine ecosystems[J]. Green Chemistry, 2022, 24(5): 1762-1779. |
56 | COOK Alexander B, DECUZZI Paolo. Harnessing endogenous stimuli for responsive materials in theranostics[J]. ACS Nano, 2021, 15(2): 2068-2098. |
57 | BONARDD Sebastian, NANDI Mridula, GARCÍA José Ignacio Hernández, et al. Self-healing polymeric soft actuators[J]. Chemical Reviews, 2023, 123(2): 736-810. |
58 | ZHANG Yunzhen, DONG Lezhen, LIU Lingyi, et al. Recent advances of stimuli-responsive polysaccharide hydrogels in delivery systems: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(21): 6300-6316. |
59 | ZHAO Ming, LI Peiquan, ZHOU Hongjun, et al. pH/redox dual responsive from natural polymer-based nanoparticles for on-demand delivery of pesticides[J]. Chemical Engineering Journal, 2022, 435: 134861. |
60 | MUSARURWA Herbert, TAWANDA TAVENGWA Nikita. Recent progress in the application of pH-responsive polymers in separation science[J]. Microchemical Journal, 2022, 179: 107503. |
61 | SCHOELLER Jean, ITEL Fabian, Karin WUERTZ-KOZAK, et al. pH-responsive electrospun nanofibers and their applications[J]. Polymer Reviews, 2022, 62(2): 351-399. |
62 | GILLI Paola, PRETTO Loretta, BERTOLASI Valerio, et al. Predicting hydrogen-bond strengths from acid-base molecular properties. The pKa slide rule: Toward the solution of a long-lasting problem[J]. Accounts of Chemical Research, 2009, 42(1): 33-44. |
63 | REIJENGA Jetse, VAN HOOF Arno, VAN LOON Antonie, et al. Development of methods for the determination of pKa values[J]. Analytical Chemistry Insights, 2013, 8: 53-71. |
64 | LIU Fang, URBAN Marek W. Recent advances and challenges in designing stimuli-responsive polymers[J]. Progress in Polymer Science, 2010, 35(1/2): 3-23. |
65 | YU Qiyao, LI Zheng, DOU Chunyan, et al. Design and application of pH sensitive and intelligent hydrogels[J]. Progress in Chemistry, 2020, 32(2/3): 179-189. |
66 | ABOU TALEB Manal F. Radiation synthesis of multifunctional polymeric hydrogels for oral delivery of insulin[J]. International Journal of Biological Macromolecules, 2013, 62: 341-347. |
67 | 申建波, 白洋, 韦中, 等. 根际生命共同体: 协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021, 58(4): 805-813. |
SHEN Jianbo, BAI Yang, WEI Zhong, et al. Rhizobiont: An interdisciplinary innovation and perspective for harmonizing resources, environment, and food security[J]. Acta Pedologica Sinica, 2021, 58(4): 805-813. | |
68 | 钟正燕, 陈炳发, 宋雁辉, 等. 根分泌物有机酸的研究方法[J]. 环境科学导刊, 2019, 38(S1): 12-18. |
ZHONG Zhengyan, CHEN Bingfa, SONG Yanhui, et al. Research methods on organic acids in root exudates[J]. Environmental Science Survey, 2019, 38(S1): 12-18. | |
69 | 魏莎, 李素艳, 孙向阳, 等. 根分泌物及其化感作用研究进展[J]. 北方园艺, 2010(18): 222-226. |
WEI Sha, LI Suyan, SUN Xiangyang, et al. Research progress in root exudates and allelopathy of root exudates[J]. Northern Horticulture, 2010(18): 222-226. | |
70 | WEN Zhihui, WHITE Philip J, SHEN Jianbo, et al. Linking root exudation to belowground economic traits for resource acquisition[J]. New Phytologist, 2022, 233(4): 1620-1635. |
71 | VERMA Shulbhi, VERMA Amit. Chapter 1. Plant root exudate analysis: Recent advances and applications[M]// Phytomicrobiome Interactions and Sustainable Agriculture. Hoboken: Wiley, 2021: 1-14. |
72 | WAREMBOURG F R, BILLES G. Estimating carbon transfers in the plant rhizosphere[M]//The Soil-root Interface. Amsterdam: Elsevier, 1979: 183-196. |
73 | HINSINGER Philippe, PLASSARD Claude, TANG Caixian, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review[J]. Plant and Soil, 2003, 248(1): 43-59. |
74 | WANG Yanliang, LAMBERS Hans. Root-released organic anions in response to low phosphorus availability: Recent progress, challenges and future perspectives[J]. Plant and Soil, 2020, 447(1): 135-156. |
75 | WEN Zhihui, PANG Jiayin, RYAN Megan H, et al. In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply[J]. Plant and Soil, 2021, 465(1): 31-46. |
76 | 周丽莉. 蚕豆、大豆、玉米根系质子和有机酸分泌差异及其在间作磷营养中的意义[D]. 北京: 中国农业大学, 2005. |
ZHOU Lili. Proton and organic acids exudated by faba bean, soybean, and maize and their significance in interspecific facilition on phosphorus uptake by intercropping[D]. Beijing: China Agricultural University, 2005. | |
77 | MA Zhiyuan, JIA Xin, ZHANG Guoxiang, et al. pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator[J]. Journal of Agricultural and Food Chemistry, 2013, 61(23): 5474-5482. |
78 | RASHIDZADEH Azam, OLAD Ali. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite[J]. Carbohydrate Polymers, 2014, 114: 269-278. |
79 | LIN Xiangyu, GUO Lizhen, SHAGHALEH Hiba, et al. A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release[J]. International Journal of Biological Macromolecules, 2021, 191: 483-491. |
80 | WANG Yuqi, SHAGHALEH Hiba, HAMOUD Youself Alhaj, et al. Synthesis of a pH-responsive nano-cellulose/sodium alginate/MOFs hydrogel and its application in the regulation of water and N-fertilizer[J]. International Journal of Biological Macromolecules, 2021, 187: 262-271. |
[1] | XIE Mengmeng, LIU Jian, DANG Rui, LI Meixin, LIN Xiaoting, SU Zhou, WANG Jie. Preparation of ionic conductive hydrogels and its applications in flexible electronic [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3128-3144. |
[2] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
[3] | XUE Yunjiao, ZHANG Xuan, LIU Yang, CHEN Yuhuan, FANG Jing, YANG Fang. Pseudo-protein biomaterials: Classification, synthesis and application [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2001-2016. |
[4] | WANG Xiong, KANG Wenqian, REN Yue, QIAO Tongsen, ZHANG Peng, HUANG Anping, LI Guangquan. Pilot scale production of porous organic polymers and their application in polyolefin catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1412-1417. |
[5] | WANG Kai, LUO Mingliang, LI Mingzhong, HUANG Feifei, PU Chunsheng, PU Jingyang, FAN Qiao. Research progress of polyethyleneimine crosslinked polymer gel system in water-drive reservoirs [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1506-1523. |
[6] | JU Fang. Fabrication and properties of synergistic antibacterial hydrogels based on the silver-sulfur coordination [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1039-1046. |
[7] | YU Xiaoxiao, CHAO Yanhong, LIU Haiyan, ZHU Wenshuai, LIU Zhichang. Enhanced photoelectric properties and photocatalytic CO2 conversion by D-A conjugated polymerization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 292-301. |
[8] | SUN Yue, WANG Sijia, WU Mingxia, SONG Xianyu, XU Shouhong. Synthesis, performance regulation and application of pH/temperature responsive polymer PMAA-b-PDMAEMA [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 480-489. |
[9] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[10] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[11] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[12] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[13] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[14] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[15] | ZHANG Yixuan, HU Wei, LIU Mengyao, JU Jingge, ZHAO Yixia, KANG Weimin. Research progress of polymer electrolytes in zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1397-1410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |