Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4320-4332.DOI: 10.16085/j.issn.1000-6613.2023-1258
• Energy processes and technology • Previous Articles
XIANG Haoyin(), CHEN Liangyong()
Received:
2023-07-21
Revised:
2023-11-17
Online:
2024-09-02
Published:
2024-08-15
Contact:
CHEN Liangyong
通讯作者:
陈良勇
作者简介:
向浩寅(1998—),男,硕士研究生,研究方向为化学链制氢。E-mail:220200400@seu.edu.cn。
基金资助:
CLC Number:
XIANG Haoyin, CHEN Liangyong. Evaluation of Ni, Ce, Zn and Cu modified Fe2O3/Al2O3 oxygen carriers for methane-fueled chemical looping hydrogen generation process[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4320-4332.
向浩寅, 陈良勇. Ni、Ce、Zn和Cu修饰Fe2O3/Al2O3载氧体的甲烷化学链制氢特性[J]. 化工进展, 2024, 43(8): 4320-4332.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1258
载氧体 | Fe2O3质量分数/% | NiO质量分数/% | CeO2质量分数/% | ZnO质量分数/% | CuO质量分数/% | Al2O3质量分数/% | 其他(质量分数)/% |
---|---|---|---|---|---|---|---|
Fe15Al | 16.44 | — | — | — | — | 82.71 | 0.85 |
Fe15Ni5Al | 16.39 | 5.53 | — | — | — | 77.35 | 0.73 |
Fe15Ce5Al | 16.00 | — | 5.18 | — | — | 78.07 | 0.75 |
Fe15Zn5Al | 16.67 | — | — | 5.32 | — | 77.32 | 0.69 |
Fe15Cu5Al | 15.90 | — | — | — | 5.89 | 77.48 | 0.73 |
载氧体 | Fe2O3质量分数/% | NiO质量分数/% | CeO2质量分数/% | ZnO质量分数/% | CuO质量分数/% | Al2O3质量分数/% | 其他(质量分数)/% |
---|---|---|---|---|---|---|---|
Fe15Al | 16.44 | — | — | — | — | 82.71 | 0.85 |
Fe15Ni5Al | 16.39 | 5.53 | — | — | — | 77.35 | 0.73 |
Fe15Ce5Al | 16.00 | — | 5.18 | — | — | 78.07 | 0.75 |
Fe15Zn5Al | 16.67 | — | — | 5.32 | — | 77.32 | 0.69 |
Fe15Cu5Al | 15.90 | — | — | — | 5.89 | 77.48 | 0.73 |
载氧体 | Fe质量分数/% | Cu质量分数/% |
---|---|---|
新鲜Fe15Al | 21.8 | — |
新鲜Fe15Cu5Al | 17.0 | 6.4 |
10次循环后Fe15Al | 27.8 | — |
10次循环后Fe15Cu5Al | 24.6 | 14.9 |
载氧体 | Fe质量分数/% | Cu质量分数/% |
---|---|---|
新鲜Fe15Al | 21.8 | — |
新鲜Fe15Cu5Al | 17.0 | 6.4 |
10次循环后Fe15Al | 27.8 | — |
10次循环后Fe15Cu5Al | 24.6 | 14.9 |
1 | ZHOU Lu, ENAKONDA Linga Reddy, HARB Moussab, et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Applied Catalysis B: Environmental, 2017, 208: 44-59. |
2 | 刘刀. 加快氢能产业发展 保障国家能源安全[J]. 新能源科技, 2021(3): 26. |
LIU Dao. Accelerating the development of hydrogen energy industry to ensure national energy security[J]. New Energy Science and Technology, 2021(3): 26. | |
3 | KOTHARI Richa, BUDDHI D, SAWHNEY R L. Comparison of environmental and economic aspects of various hydrogen production methods[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 553-563. |
4 | FAN Liang-Shih. Chemical looping systems for fossil energy conversions[M]. Hoboken: Wiley-AIChE, 2010. |
5 | HUA Xiuning, ZHU Jie, WU Xiaoshuang, et al. Packed bed chemical looping platform: Design and operation of 30kWth pilot unit[J]. Procedia Environmental Sciences, 2016, 31: 81-90. |
6 | GUPTA Puneet, VELAZQUEZ-VARGAS Luis G, FAN Liang-Shih. Syngas redox (SGR) process to produce hydrogen from coal derived syngas[J]. Energy & Fuels, 2007, 21(5): 2900-2908. |
7 | KATHE Mandar V, EMPFIELD Abbey, NA Jing, et al. Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis[J]. Applied Energy, 2016, 165: 183-201. |
8 | ZENG Liang, CHENG Zhuo, FAN Jonathan A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
9 | 罗明, 王树众, 王龙飞, 等. 基于化学链技术制氢的研究进展[J]. 化工进展, 2014, 33(5): 1123-1133. |
LUO Ming, WANG Shuzhong, WANG Longfei, et al. Advances in hydrogen production using chemical-looping technology[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1123-1133. | |
10 | 安阳, 袁思杰, 高振东, 等. Mg修饰Fe/Al载氧体煤化学链制氢[J]. 化工进展, 2022, 41(2): 648-654. |
AN Yang, YUAN Sijie, GAO Zhendong, et al. Chemical looping hydrogen generation of coal with oxygen carrier of Mg modified Fe/Al[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 648-654. | |
11 | KANG Kyoung-Soo, KIM Chang-Hee, Ki-Kwang BAE, et al. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12246-12254. |
12 | LI Fanxing, KIM Hyung Ray, SRIDHAR Deepak, et al. Syngas chemical looping gasification process: Oxygen carrier particle selection and performance[J]. Energy & Fuels, 2009, 23(8): 4182-4189. |
13 | MAYER Florian, BIDWE Ajay R, SCHOPF Alexander, et al. Comparison of a new micaceous iron oxide and ilmenite as oxygen carrier for chemical looping combustion with respect to syngas conversion[J]. Applied Energy, 2014, 113: 1863-1868. |
14 | MEI Daofeng, ABAD Alberto, ZHAO Haibo, et al. On a highly reactive Fe2O3/Al2O3 oxygen carrier for in situ gasification chemical looping combustion[J]. Energy & Fuels, 2014, 28(11): 7043-7052. |
15 | QIN Wu, CHEN Qiuluan, WANG Yang, et al. Theoretical study of oxidation-reduction reaction of Fe2O3 supported on MgO during chemical looping combustion[J]. Applied Surface Science, 2013, 266: 350-354. |
16 | KARIMI E, FORUTAN H R, SAIDI M, et al. Experimental study of chemical-looping reforming in a fixed-bed reactor: Performance investigation of different oxygen carriers on Al2O3 and TiO2 support[J]. Energy & Fuels, 2014, 28(4): 2811-2820. |
17 | SONG Hui, DOROODCHI Elham, MOGHTADERI Behdad. Redox characteristics of Fe-Ni/SiO2 bimetallic oxygen carriers in CO under conditions pertinent to chemical looping combustion[J]. Energy & Fuels, 2012, 26(1): 75-84. |
18 | HAFIZI Ali, RAHIMPOUR Mohammad Reza. Inhibiting Fe-Al spinel formation on a narrowed mesopore-sized MgAl2O4 support as a novel catalyst for H2 production in chemical looping technology[J]. Catalysts, 2018, 8(1): 27. |
19 | ABAD A, MATTISSON T, LYNGFELT A, et al. The use of iron oxide as oxygen carrier in a chemical-looping reactor[J]. Fuel, 2007, 86(7/8): 1021-1035. |
20 | MIAO Zhenwu, SHEN Laihong, ZHAO Haibo. Cycling performance of composite hematite and copper ore oxygen carrier in chemical looping combustion[J]. Chemical Engineering Journal, 2023, 452: 139224. |
21 | 韩丹华, 郭雪岩, 王志远. 化学链重整制氢NiO-CeO2/γ-Al2O3复合载氧体的性能[J]. 化工进展, 2022, 41(1): 192-200. |
HAN Danhua, GUO Xueyan, WANG Zhiyuan. Performance of NiO-CeO2/γ-Al2O3 composite oxygen carriers for hydrogen generation with chemical looping reforming[J]. Chemical Industry and Engineering Progress, 2022, 41(1):192-200. | |
22 | SIRIWARDANE Ranjani, TIAN Hanjing, SIMONYI Thomas, et al. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion[J]. Fuel, 2013, 108: 319-333. |
23 | THEOFANIDIS Stavros Alexandros, GALVITA Vladimir V, POELMAN Hilde, et al. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe[J]. ACS Catalysis, 2015, 5(5): 3028-3039. |
24 | MA Shiwei, CHENG Fang, LU Ping, et al. Enhanced performance of hematite oxygen carrier by CeO2 for chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5130-5141. |
25 | CUI Dongxu, LI Min, QIU Yu, et al. Improved hydrogen production with 100% fuel conversion through the redox cycle of ZnFeAlO x oxygen carrier in chemical looping scheme[J]. Chemical Engineering Journal, 2020, 400: 125769. |
26 | YÜZBASI Nur Sena, ABDALA Paula M, IMTIAZ Qasim, et al. The effect of copper on the redox behaviour of iron oxide for chemical-looping hydrogen production probed by in situ X-ray absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(18): 12736-12745. |
27 | BHAVSAR Saurabh, Götz VESER. Bimetallic Fe-Ni oxygen carriers for chemical looping combustion[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15342-15352. |
28 | ZHU Xing, ZHANG Mingyue, LI Kongzhai, et al. Chemical-looping water splitting over ceria-modified iron oxide: Performance evolution and element migration during redox cycling[J]. Chemical Engineering Science, 2018, 179: 92-103. |
29 | SADYKOV Vladislav, MEZENTSEVA Natalia, ALIKINA Galina, et al. Nanocomposite catalysts for internal steam reforming of methane and biofuels in solid oxide fuel cells: Design and performance[J]. Catalysis Today, 2009, 146(1/2): 132-140. |
30 | WANG Lulu, SHEN Laihong, LIU Weidong, et al. Chemical looping hydrogen generation using synthesized hematite-based oxygen carrier comodified by potassium and copper[J]. Energy & Fuels, 2017, 31(8): 8423-8433. |
31 | 朱珉, 陈时熠, 马士伟, 等. Fe2O3/Al2O3氧载体化学链制氢联合甲烷干重整制备氢气和合成气[J]. 工程热物理学报, 2019, 40(10): 2447-2453. |
ZHU Min, CHEN Shiyi, MA Shiwei, et al. Syngas and hydrogen co-production on Fe2O3/Al2O3 oxygen carrier via chemical-looping hydrogen generation process with methane dry reforming[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2447-2453. | |
32 | ZHOU Zhihao, DENG Guoshu, LI Lin, et al. Chemical looping co-conversion of CH4 and CO2 using Fe2O3/Al2O3 pellets as both oxygen carrier and catalyst in a fluidized bed reactor[J]. Chemical Engineering Journal, 2022, 428: 132133. |
33 | HUANG Liang, TANG Mingchen, FAN Maohong, et al. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Applied Energy, 2015, 159: 132-144. |
34 | WU Liqing, XIE Xiangjuan, REN Hailian, et al. A short review on nickel-based catalysts in dry reforming of methane: Influences of oxygen defects on anti-coking property[J]. Materials Today: Proceedings, 2021, 42: 153-160. |
35 | CHIRON François-Xavier, PATIENCE Gregory S. Kinetics of mixed copper-iron based oxygen carriers for hydrogen production by chemical looping water splitting[J]. International Journal of Hydrogen Energy, 2012, 37(14): 10526-10538. |
36 | SIRIWARDANE Ranjani, TIAN Hanjing, FISHER James. Production of pure hydrogen and synthesis gas with Cu-Fe oxygen carriers using combined processes of chemical looping combustion and methane decomposition/reforming[J]. International Journal of Hydrogen Energy, 2015, 40(4): 1698-1708. |
37 | YU Bo, ZHANG Ping, ZHANG Lei, et al. Studies on the preparation of active oxygen-deficient copper ferrite and its application for hydrogen production through thermal chemical water splitting[J]. Science in China Series B: Chemistry, 2008, 51(9): 878-886. |
38 | ZHU Min, CHEN Shiyi, MA Shiwei, et al. Carbon formation on iron-based oxygen carriers during CH4 reduction period in chemical looping hydrogen generation process[J]. Chemical Engineering Journal, 2017, 325: 322-331. |
39 | LI Yu, ZHANG Changsen, LIU Yonggang, et al. Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation[J]. Fuel, 2017, 189: 23-31. |
40 | GUISNET M, MAGNOUX P. Organic chemistry of coke formation[J]. Applied Catalysis A: General, 2001, 212(1/2): 83-96. |
41 | HUANG Jijiang, VEKSHA Andrei, JIN JUN Thaddeus FOO, et al. Upgrading waste plastic derived pyrolysis gas via chemical looping cracking-gasification using Ni-Fe-Al redox catalysts[J]. Chemical Engineering Journal, 2022, 438: 135580. |
42 | CHEN Liangyong, LI Haixu, WANG Haifeng, et al. Performance of red mud oxygen carriers in chemical-looping hydrogen production using different components of plastic waste pyrolytic gas[J]. Journal of Cleaner Production, 2023, 409: 137213. |
43 | 郭明山, 金晶, 胡强, 等. 小型流化床铁基载氧体的积炭特性[J]. 煤炭转化, 2016, 39(1): 40-43. |
GUO Mingshan, JIN Jing, HU Qiang, et al. Carbon deposition characteristics of Fe-based oxygen carriers in bench fluidized bed[J]. Coal Conversion, 2016, 39(1): 40-43. | |
44 | 王璐璐, 沈来宏. 铜修饰铁矿石的化学链制氢特性实验研究[J]. 工程热物理学报, 2017, 38(12): 2731-2737. |
WANG Lulu, SHEN Laihong. Evaluation of copper modified hematite for chemical-looping hydrogen generation[J]. Journal of Engineering Thermophysics, 2017, 38(12): 2731-2737. | |
45 | CHEN Liangyong, BAO Jinhua, KONG Liang, et al. Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion[J]. Applied Energy, 2017, 197: 40-51. |
46 | YAMAGUCHI Doki, TANG Liangguang, Chiang KEN. Pre-oxidation of natural ilmenite for use as an oxygen carrier in the cyclic methane-steam redox process for hydrogen production[J]. Chemical Engineering Journal, 2017, 322: 632-645. |
47 | MOLDENHAUER Patrick, Magnus RYDÉN, MATTISSON Tobias, et al. The use of ilmenite as oxygen carrier with kerosene in a 300W CLC laboratory reactor with continuous circulation[J]. Applied Energy, 2014, 113: 1846-1854. |
48 | SUN Yugang, ZUO Xiaobing, SANKARANARAYANAN Subramanian K R S,et al. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution[J]. Science, 2017, 356(6335): 303-307. |
49 | KHEDR M H, FARGHALI A A, ABDEL-KHALEK A A. Microstructure, kinetics and mechanisms of nano-crystalline CuFe2O4 reduction in flowing hydrogen at 300—600℃ for the production of metallic nano-wires[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(1): 1-6. |
50 | TILLAND A, PRIETO J, PETITJEAN D, et al. Study and analyses of a CLC oxygen carrier degradation mechanism in a fixed bed reactor[J]. Chemical Engineering Journal, 2016, 302: 619-632. |
[1] | LIANG Guowei, JIN Jing, DONG Bo, HOU Fengxiao. Effect of in-situ modification of coal ash on carbon deposition of Ca-based oxygen carrier in chemical looping combustion [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4253-4261. |
[2] | CHEN Liang, LUO Dongmei, WANG Zhenghao, ZHONG Shan, TANG Siyang, LIANG Bin. Research progress of industrial by-product gas-fueled chemical looping hydrogen generation technology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3729-3746. |
[3] | DENG Yao, ZHAO Qingpeng, XU Jin, LIU Dawei, MA Xiaoxun, XU Long. Methane chemical looping reforming over cordierite-loaded Fe/Ce oxygen carriers prepared by ball milling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2396-2408. |
[4] | WANG Jiarui, LIU Dawei, DENG Yao, XU Jin, MA Xiaoxun, XU Long. Research progress of oxygen carriers in chemical looping reforming reaction of methane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2235-2253. |
[5] | ZHANG Pengfei, CHEN Weipeng, XIAO Zhuonan, LYU Qinggang, ZHANG Shunfeng, ZHANG Zifeng. Red brick doping modified Baiyun Obo iron ore concentrate oxygen carrier performance [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2226-2234. |
[6] | WANG Xudong, LIU Dunyu, XU Kailong, LIU Qiuqi, FAN Yunpei, JIN Jing. Impacts of CeO2 oxygen carriers on the conversion of mercury in chemical looping combustion of coal [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2191-2200. |
[7] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[8] | GONG Chenjun, MEI Daofeng. Effects of tungsten decoration on the performance of a Ni-based oxygen carrier during chemical looping reforming of biogas for hydrogen generation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2130-2141. |
[9] | FAN Yunpei, JIN Jing, LIU Dunyu, WANG Jingjie, LIU Qiuqi, XU Kailong. Mercury removal by CaSO4 oxygen carrier during in-situ gasification and chemical-looping combustion of coal [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1638-1648. |
[10] | LI Naizhen, SUN Ruijie, QIN Zhifeng, MIAO Maoqian, WU Qiongxiao, CHANG Liping, SUN Pengcheng, ZENG Jian, LIU Yi. Effects of constant carbon atmosphere on the activity, selectivity and coking of catalysts in hydrodesulfurization of coke oven gas [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 783-793. |
[11] | LI Pan, WANG Biao, XU Junhao, WANG Xianhua, HU Junhao, SONG Jiande, BAI Jing, CHANG Chun. Research progress on carbon deposition of catalysts for biomass pyrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 236-246. |
[12] | AN Yang, YUAN Sijie, GAO Zhendong, WU Man, WANG Lingyun, GUO Qingjie. Chemical looping hydrogen generation of coal with oxygen carrier of Mg-modified Fe/Al [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 648-654. |
[13] | LIN Junming, CEN Jie, LI Zhengjia, YANG Linyan, YAO Nan. Development on deactivation mechanism of Ni-based reforming catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 201-209. |
[14] | HAN Danhua, GUO Xueyan, WANG Zhiyuan. Performance of NiO-CeO2/γ-Al2O3 composite oxygen carriers for hydrogen generation with chemical looping reforming [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 192-200. |
[15] | PENG Chong, LIU Peng, HU Yongkang, XIAO Wende, PAN Yunxiang. Recent progress in fabricating efficient Ni-based catalysts by cold plasma [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3553-3563. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |