Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3553-3563.DOI: 10.16085/j.issn.1000-6613.2021-0221
• Invited review • Previous Articles Next Articles
PENG Chong1(), LIU Peng2, HU Yongkang1, XIAO Wende2, PAN Yunxiang2()
Received:
2021-01-31
Revised:
2021-03-23
Online:
2021-07-19
Published:
2021-07-06
Contact:
PAN Yunxiang
彭冲1(), 刘鹏2, 胡永康1, 肖文德2, 潘云翔2()
通讯作者:
潘云翔
作者简介:
彭冲(1984—),男,博士,研究方向为加氢催化剂及工艺。E-mail:基金资助:
CLC Number:
PENG Chong, LIU Peng, HU Yongkang, XIAO Wende, PAN Yunxiang. Recent progress in fabricating efficient Ni-based catalysts by cold plasma[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3553-3563.
彭冲, 刘鹏, 胡永康, 肖文德, 潘云翔. 低温等离子体构筑高效Ni基催化剂进展[J]. 化工进展, 2021, 40(7): 3553-3563.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0221
催化剂 | 低温等离子体 | 制备方法(图1) | 反应 | 结构特征和表面性质 | 文献 |
---|---|---|---|---|---|
Ni/SiO2 | 辉光放电 介质阻挡放电 介质阻挡放电 | 方法2 方法2 方法2 | CH4-CO2重整 CH4-H2O重整 CO甲烷化 | Ni-SiO2作增强,Ni颗粒尺寸小、晶型好 Ni颗粒尺寸5.5nm,小于传统催化剂(15.3nm) Ni颗粒缺陷位少 | [ [ [ |
Ni/Ga2O3/SiO2 | 介质阻挡放电 | 方法2 | CH4-CO2重整 | 具有较强的吸附和活化CO2的能力 | [ |
Ni/CeO2/SiO2 | 介质阻挡放电 | 方法2 | CH4-CO2重整 | Ni-SiO2作用增强、表面具有大量活性氧物种 | [ |
Ni/γ-Al2O3 | 辉光放电 | 方法2 | CH4-CO2重整 | Ni-载体作用强,Ni颗粒尺度小,Ni(111)面多 | [ |
Ni/CeO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 CO甲烷化 | Ni-CeO2作用强,Ni颗粒尺寸小 具有较多Ni-CeO2界面位置 | [ [ |
Ni/ZrO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 CH4-CO2重整 | Ni颗粒尺寸小,Ni(111)面多 ZrO2表面具有丰富氧缺陷位 | [ [ |
Ni/TiO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 | Ni(111)面多 | [ |
Ni/MgO | 介质阻挡放电 | 方法2 | CO分解 | Ni颗粒缺陷位少,具有更多Ni(111)面 | [ |
Ni/MgAl2O4 | 介质阻挡放电 | 方法1 | CH4分解 CO2甲烷化 | Ni颗粒缺陷位少,具有更多Ni(111)面 具有高品质Ni-MgAl2O4界面 | [ [ |
Ni-Co/SiO2 | 介质阻挡放电 | 方法2 | CO甲烷化 | 形成均质Ni-Co颗粒 | [ |
Ni/Y2Ti2O7 | 介质阻挡放电 | 方法2/方法3 | CH4-H2O重整 | Ni-载体作用强,表面具有大量活性 | [ |
Ni-Fe/Al2O3 | 介质阻挡放电 | 方法1 | CO2甲烷化 | Ni-Fe合金颗粒 | [ |
Ni-Ce/SBA-15 | 介质阻挡放电 | 方法1 | CO甲烷化 | Ni颗粒尺寸小 | [ |
Ni/LaFeO3 | 介质阻挡放电 | 方法2 | CH4-H2O重整 | Ni-载体作用强,Ni颗粒分散性好 | [ |
Ni-Co/Al2O3-ZrO2 | 辉光放电 | 方法2 | CH4-CO2重整 | 金属-载体作用强,金属颗粒尺寸小 | [ |
催化剂 | 低温等离子体 | 制备方法(图1) | 反应 | 结构特征和表面性质 | 文献 |
---|---|---|---|---|---|
Ni/SiO2 | 辉光放电 介质阻挡放电 介质阻挡放电 | 方法2 方法2 方法2 | CH4-CO2重整 CH4-H2O重整 CO甲烷化 | Ni-SiO2作增强,Ni颗粒尺寸小、晶型好 Ni颗粒尺寸5.5nm,小于传统催化剂(15.3nm) Ni颗粒缺陷位少 | [ [ [ |
Ni/Ga2O3/SiO2 | 介质阻挡放电 | 方法2 | CH4-CO2重整 | 具有较强的吸附和活化CO2的能力 | [ |
Ni/CeO2/SiO2 | 介质阻挡放电 | 方法2 | CH4-CO2重整 | Ni-SiO2作用增强、表面具有大量活性氧物种 | [ |
Ni/γ-Al2O3 | 辉光放电 | 方法2 | CH4-CO2重整 | Ni-载体作用强,Ni颗粒尺度小,Ni(111)面多 | [ |
Ni/CeO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 CO甲烷化 | Ni-CeO2作用强,Ni颗粒尺寸小 具有较多Ni-CeO2界面位置 | [ [ |
Ni/ZrO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 CH4-CO2重整 | Ni颗粒尺寸小,Ni(111)面多 ZrO2表面具有丰富氧缺陷位 | [ [ |
Ni/TiO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 | Ni(111)面多 | [ |
Ni/MgO | 介质阻挡放电 | 方法2 | CO分解 | Ni颗粒缺陷位少,具有更多Ni(111)面 | [ |
Ni/MgAl2O4 | 介质阻挡放电 | 方法1 | CH4分解 CO2甲烷化 | Ni颗粒缺陷位少,具有更多Ni(111)面 具有高品质Ni-MgAl2O4界面 | [ [ |
Ni-Co/SiO2 | 介质阻挡放电 | 方法2 | CO甲烷化 | 形成均质Ni-Co颗粒 | [ |
Ni/Y2Ti2O7 | 介质阻挡放电 | 方法2/方法3 | CH4-H2O重整 | Ni-载体作用强,表面具有大量活性 | [ |
Ni-Fe/Al2O3 | 介质阻挡放电 | 方法1 | CO2甲烷化 | Ni-Fe合金颗粒 | [ |
Ni-Ce/SBA-15 | 介质阻挡放电 | 方法1 | CO甲烷化 | Ni颗粒尺寸小 | [ |
Ni/LaFeO3 | 介质阻挡放电 | 方法2 | CH4-H2O重整 | Ni-载体作用强,Ni颗粒分散性好 | [ |
Ni-Co/Al2O3-ZrO2 | 辉光放电 | 方法2 | CH4-CO2重整 | 金属-载体作用强,金属颗粒尺寸小 | [ |
1 | OLIVIER-BOURBIGOU H, BREUIL P A R, MAGNA L, et al. Nickel catalyzed olefin oligomerization and dimerization[J]. Chemical Reviews, 2020, 120(15): 7919-7983. |
2 | BEPARI S, KUILA D. Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts—A review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18090-18113. |
3 | LIU C J, YE J Y, JIANG J J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. ChemCatChem, 2011, 3(3): 529-541. |
4 | 王晶, 姚楠. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517. |
WANG Jing, YAO Nan. Ni-based catalysts for syngas methanation reaction[J]. Progress in Chemistry, 2017, 29(12): 1509-1517. | |
5 | 王东旭, 肖显斌, 高静, 等. 助剂钾对镍基催化剂性能影响研究进展[J]. 化工进展, 2014, 33(3): 668-672. |
WANG Dongxu, XIAO Xianbin, GAO Jing, et al. A review of potassium promoter effect on nickel-based catalyst performance[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 668-672. | |
6 | WU X, XU L, CHEN M, et al. Recent progresses in the design and fabrication of highly efficient Ni-based catalysts with advanced catalytic activity and enhanced anti-coke performance toward CO2 reforming of methane[J]. Frontiers in Chemistry, 2020, 8: 581923. |
7 | 阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展, 2018, 37(10): 3850-3857. |
RUAN Yongzhe, LU Yao, WANG Shengping. Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3850-3857. | |
8 | KUMAR A, SINGH R, SINHA A S K. Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(26): 12983-13010. |
9 | BIAN Z F, DAS S, WAI M H, et al. A review on bimetallic nickel-based catalysts for CO2 reforming of methane[J]. ChemPhysChem, 2017, 18(22): 3117-3134. |
10 | MIAO B, MA S S K, WANG X, et al. Catalysis mechanisms of CO2 and CO methanation[J]. Catalysis Science & Technology, 2016, 6(12): 4048-4058. |
11 | 赵彬然, 闫晓亮, 刘昌俊. 冷等离子体强化制备镍催化剂及应用[J]. 化学反应工程与工艺, 2013, 29(3): 222-229. |
ZHAO Binran, YAN Xiaoliang, LIU Changjun. Preparation and application of Ni catalyst via plasma intensification[J]. Chemical Reaction Engineering and Technology, 2013, 29(3): 222-229. | |
12 | WANG Z, ZHANG Y, NEYTS E C, et al. Catalyst preparation with plasmas: how does it work?[J]. ACS Catalysis, 2018, 8(3): 2093-2110. |
13 | LIU Y, PAN Y X, WANG Z J, et al. Facile and fast template removal from mesoporous MCM-41 molecular sieve using dielectric-barrier discharge plasma[J]. Catalysis Communications, 2010, 11(6): 551-554. |
14 | LIU Y, PAN Y X, KUAI P Y, et al. Template removal from ZSM-5 zeolite using dielectric-barrier discharge plasma[J]. Catalysis Letters, 2010, 135(3/4): 241-245. |
15 | LIU Y, WANG Z, LIU C J. Mechanism of template removal for the synthesis of molecular sieves using dielectric barrier discharge[J]. Catalysis Today, 2015, 256: 137-141. |
16 | SUN Q D, YU B, LIU C J. Characterization of ZnO nanotube fabricated by the plasma decomposition of Zn(OH)2via dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2012, 32(2): 201-209. |
17 | ZHOU Y, LIU C J. Amorphization of metal-organic framework MOF-5 by electrical discharge[J]. Plasma Chemistry and Plasma Processing, 2011, 31(3): 499-506. |
18 | GUO Q T, WITH P, LIU Y, et al. Carbon template removal by dielectric-barrier discharge plasma for the preparation of zirconia[J]. Catalysis Today, 2013, 211: 156-161. |
19 | JIA X Y, ZHANG X S, RUI N, et al. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Applied Catalysis B: Environmental, 2019, 244: 159-169. |
20 | ZHANG Y, WANG W, WANG Z Y, et al. Steam reforming of methane over Ni/SiO2 catalyst with enhanced coke resistance at low steam to methane ratio[J]. Catalysis Today, 2015, 256: 130-136. |
21 | YAN X L, LIU C J. Effect of the catalyst structure on the formation of carbon nanotubes over Ni/MgO catalyst[J]. Diamond and Related Materials, 2013, 31: 50-57. |
22 | PAN Y X, LIU C J, SHI P. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane[J]. Journal of Power Sources, 2008, 176(1): 46-53. |
23 | ZHU X L, HUO P P, ZHANG Y P, et al. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane[J]. Applied Catalysis B: Environmental, 2008, 81(1/2): 132-140. |
24 | PAN Y X, KUAI P Y, LIU Y, et al. Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst[J]. Energy & Environmental Science, 2010, 3(9): 1322. |
25 | PAN Y X, LIU C J, GE Q F. Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/γ-Al2O3: a density functional theory study[J]. Journal of Catalysis, 2010, 272(2): 227-234. |
26 | SHI L B, ZHOU Y M, QI S T, et al. Pt catalysts supported on H2 and O2 plasma-treated Al2O3 for hydrogenation and dehydrogenation of the liquid organic hydrogen carrier pair dibenzyltoluene and perhydrodibenzyltoluene[J]. ACS Catalysis, 2020, 10(18): 10661-10671. |
27 | HU X, JIA X Y, ZHANG X S, et al. Improvement in the activity of Ni/ZrO2 by cold plasma decomposition for dry reforming of methane[J]. Catalysis Communications, 2019, 128: 105720. |
28 | HUANG J J, YAN Y, SAQLINE S, et al. High performance Ni catalysts prepared by freeze drying for efficient dry reforming of methane[J]. Applied Catalysis B: Environmental, 2020, 275: 119109. |
29 | ZOU J J, LIU C J, ZHANG Y P. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment[J]. Langmuir, 2006, 22(5): 2334-2339. |
30 | YAN X L, HU T, LIU P, et al. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: effect of interfacial structure of Ni/CeO2 on SiO2[J]. Applied Catalysis B: Environmental, 2019, 246: 221-231. |
31 | ZHAO B R, YAN X L, ZHOU Y, et al. Effect of catalyst structure on growth and reactivity of carbon nanofibers over Ni/MgAl2O4[J]. Industrial & Engineering Chemistry Research, 2013, 52(24): 8182-8188. |
32 | ZHOU R, RUI N, FAN Z G, et al. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22017-22025. |
33 | ZHAN Y Y, SONG K, SHI Z M, et al. Influence of reduction temperature on Ni particle size and catalytic performance of Ni/Mg(Al)O catalyst for CO2 reforming of CH4[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2794-2807. |
34 | KIM J H, SUH D J, PARK T J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Applied Catalysis A: General, 2000, 197(2): 191-200. |
35 | LI L, ZUO S W, AN P F, et al. Hydrogen production via steam reforming of n-dodecane over NiPt alloy catalysts[J]. Fuel, 2020, 262: 116469. |
36 | HAYE E, BUSBY Y, SILVA PIRES M DA, et al. Low-pressure plasma synthesis of Ni/C nanocatalysts from solid precursors: influence of the plasma chemistry on the morphology and chemical state[J]. ACS Applied Nano Materials, 2018, 1(1): 265-273. |
37 | SILVA PIRES M DA, HAYE E, ZUBIAUR A, et al. Defective Pt-Ni/graphene nanomaterials by simultaneous or sequential treatments of organometallic precursors by low-pressure oxygen plasma[J]. Plasma Processes and Polymers, 2019, 16(5): 1800203. |
38 | ZHAO B R, LIU P, LI S, et al. Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: effect of homogeneity of Ni-Co alloy[J]. Applied Catalysis B: Environmental, 2020, 278: 119307. |
39 | YAN X L, LIU Y, ZHAO B R, et al. Methanation over Ni/SiO2: effect of the catalyst preparation methodologies[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2283-2291. |
40 | RUI N, ZHANG X S, ZHANG F, et al. Highly active Ni/CeO2 catalyst for CO2 methanation: preparation and characterization[J]. Applied Catalysis B: Environmental, 2021, 282: 119581. |
41 | ZHANG X S, RUI N, JIA X Y, et al. Effect of decomposition of catalyst precursor on Ni/CeO2 activity for CO methanation[J]. Chinese Journal of Catalysis, 2019, 40(4): 495-503. |
42 | FAN Z G, SUN K H, RUI N, et al. Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition[J]. Journal of Energy Chemistry, 2015, 24(5): 655-659. |
43 | XIA L H, FANG X Z, XU X L, et al. The promotional effects of plasma treating on Ni/Y2Ti2O7 for steam reforming of methane (SRM): elucidating the NiO-support interaction and the states of the surface oxygen anions[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4556-4569. |
44 | LI Z H, ZHAO T T, ZHANG L J. Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation[J]. Applied Organometallic Chemistry, 2018, 32(5): e4328. |
45 | BIAN L, ZHANG L J, ZHU Z T, et al. Methanation of carbon oxides on Ni/Ce/SBA-15 pretreated with dielectric barrier discharge plasma[J]. Molecular Catalysis, 2018, 446: 131-139. |
46 | LIAN J, FANG X Z, LIU W M, et al. Ni supported on LaFeO3 perovskites for methane steam reforming: on the promotional effects of plasma treatment in H2-Ar atmosphere[J]. Topics in Catalysis, 2017, 60(12/13/14): 831-842. |
47 | RAHEMI N, HAGHIGHI M, BABALUO A A, et al. Plasma-assisted dispersion of bimetallic Ni-Co over Al2O3-ZrO2 for CO2 reforming of methane: influence of voltage on catalytic properties[J]. Topics in Catalysis, 2017, 60(12/13/14): 843-854. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |