1 |
HUANG Pengpeng, CHEN Tinghui, ZHENG Yane, et al. Aerobic epoxidation of α-pinene using Mn/SAPO-34 catalyst: Optimization via response surface methodology (RSM)[J]. Molecular Catalysis, 2023, 535: 112872.
|
2 |
VIALEMARINGE Marianne, CAMPAGNOLE Monique, BOURGEOIS Marie-Josèphe, et al. 2, 3-époxypinane et acides de Lewis: Mise au point[J]. Comptes Rendus De L’Académie Des Sciences - Series Ⅱ C - Chemistry, 1999, 2(7/8): 449-454.
|
3 |
孟子豪, 李青云, 刘幽燕, 等. 单相体系中MOF固定化脂肪酶催化柠檬烯环氧化[J]. 化工进展, 2022, 41(12): 6540-6548.
|
|
MENG Zihao, LI Qingyun, LIU Youyan, et al. MOF-immobilized lipase-catalyzed epoxidation of limonene in a single-phase system[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6540-6548.
|
4 |
ZOU Cheng, LIU Youyan, QIN Yiming, et al. Chemoenzymatic epoxidation of α - p i n e n e catalyzed by novozym 435[J]. Advanced Materials Research, 2013, 634/635/636/637/638: 896-900.
|
5 |
GRZESZCZAK J, WRÓBLEWSKA A, KAMIŃSKA A, et al. Carbon catalysts from pine cones—Synthesis and testing of their activities[J]. Catalysis Today, 2023, 423: 113882.
|
6 |
MELCHIORS Marina S, VIEIRA Thayne Y, PEREIRA Luiz P S, et al. Epoxidation of (R)-(+)-limonene to 1, 2-limonene oxide mediated by low-cost immobilized Candida antarctica lipase fraction B[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13918-13925.
|
7 |
MOHAMMED Misbahu Ladan, SAHA Basudeb. Recent advances in greener and energy efficient alkene epoxidation processes[J]. Energies, 2022, 15(8): 2858.
|
8 |
WANG Yih-Wen. Evaluation of self-heating models for peracetic acid using calorimetry[J]. Process Safety and Environmental Protection, 2018, 113: 122-131.
|
9 |
SPECTOR Arthur A, KIM Hee-Yong. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2015, 1851(4): 356-365.
|
10 |
PANKE Sven, HELD Martin, WUBBOLTS Marcel G, et al. Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase[J]. Biotechnology and Bioengineering, 2002, 80(1): 33-41.
|
11 |
MOROZOV Alexander, CHATFIELD David. How the proximal pocket may influence the enantiospecificities of chloroperoxidase-catalyzed epoxidations of olefins[J]. International Journal of Molecular Sciences, 2016, 17(8): 1297.
|
12 |
SOLER Jordi, GERGEL Sebastian, KLAUS Cindy, et al. Enzymatic control over reactive intermediates enables direct oxidation of alkenes to carbonyls by a P450 iron-oxo species[J]. Journal of the American Chemical Society, 2022, 144(35): 15954-15968.
|
31 |
PASHA Mustafa Kamal, DAI Lingmei, LIU Dehua, et al. Biodiesel production with enzymatic technology: Progress and perspectives[J]. Biofuels, Bioproducts and Biorefining, 2021, 15(5): 1526-1548.
|
32 |
CHEN Jue, CHENG Qibin, MA Qianqian, et al. Salidroside synthesis via glycosylation by β - D - g l u c o s i d a s e immobilized on chitosan microspheres in deep eutectic solvents[J]. Biocatalysis and Biotransformation, 2024, 42(2): 227-240.
|
33 |
ABDULMALEK Emilia, ARUMUGAM Mahashanon, MIZAN Hanis Nabillah, et al. Chemoenzymatic epoxidation of alkenes and reusability study of the phenylacetic acid[J]. The Scientific World Journal, 2014, 2014: 756418.
|
13 |
MINAMI Atsushi, SHIMAYA Mayu, SUZUKI Gaku, et al. Sequential enzymatic epoxidation involved in polyether lasalocid biosynthesis[J]. Journal of the American Chemical Society, 2012, 134(17): 7246-7249.
|
14 |
ZHAO Zexin, LAN Dongming, TAN Xiyu, et al. How to break the Janus effect of H2O2 in biocatalysis? understanding inactivation mechanisms to generate more robust enzymes[J]. ACS Catalysis, 2019, 9(4): 2916-2921.
|
15 |
MEYER Janine, HOLTMANN Dirk, ANSORGE-SCHUMACHER Marion B, et al. Development of a continuous process for the lipase-mediated synthesis of peracids[J]. Biochemical Engineering Journal, 2017, 118: 34-40.
|
16 |
Janine MEYER-WAßEWITZ, HOLTMANN Dirk, ANSORGE-SCHUMACHER Marion B, et al. An organic-single-phase CSTR process for the chemo-enzymatic epoxidation of α-pinene enables high selectivity and productivity[J]. Biochemical Engineering Journal, 2017, 126: 68-77.
|
17 |
ANKUDEY Emanuel G, OLIVO Horacio F, PEEPLES Tonya L. Lipase-mediated epoxidation utilizing urea-hydrogen peroxide in ethyl acetate[J]. Green Chemistry, 2006, 8(10): 923-926.
|
18 |
ZISIS Themistoklis, FREDDOLINO Peter L, TURUNEN Petri, et al. Interfacial activation of Candida antarctica lipase B: Combined evidence from experiment and simulation[J]. Biochemistry, 2015, 54(38): 5969-5979.
|
19 |
SALVI Harshada M, YADAV Ganapati D. Chemoenzymatic epoxidation of limonene using a novel surface-functionalized silica catalyst derived from agricultural waste[J]. ACS Omega, 2020, 5(36): 22940-22950.
|
20 |
TZIALLA Aikaterini A, PAVLIDIS Ioannis V, FELICISSIMO Marcella P, et al. Lipase immobilization on smectite nanoclays: Characterization and application to the epoxidation of α - p i n e n e [J]. Bioresource Technology, 2010, 101(6): 1587-1594.
|
21 |
ZHANG Panliang, CHEN Jing, SUN Bizhu, et al. Enhancement of the catalytic efficiency of Candida antarctica lipase A in enantioselective hydrolysis through immobilization onto a hydrophobic MOF support[J]. Biochemical Engineering Journal, 2021, 173: 108066.
|
22 |
THAKUR Mamta, NANDA Vikas. Composition and functionality of bee pollen: A review[J]. Trends in Food Science & Technology, 2020, 98: 82-106.
|
23 |
SHIN Jeehoon, ANDREAS HUTOMO Calvin, KIM Jinhyun, et al. Natural pollen exine-templated synthesis of photocatalytic metal oxides with high surface area and oxygen vacancies[J]. Applied Surface Science, 2022, 599: 154064.
|
24 |
TENG Xingning, SI Zhihao, LI Shufeng, et al. Tin-loaded sulfonated rape pollen for efficient catalytic production of furfural from corn stover[J]. Industrial Crops and Products, 2020, 151: 112481.
|
25 |
MARIC Tijana, NASIR Muhammad Zafir Mohamad, ROSLI Nur Farhanah, et al. Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier[J]. Advanced Functional Materials, 2020, 30(19): 2000112.
|
26 |
STAUCH Benjamin, FISHER Stuart J, CIANCI Michele. Open and closed states of Candida antarctica lipase B: Protonation and the mechanism of interfacial activation 1[J]. Journal of Lipid Research, 2015, 56(12): 2348-2358.
|
27 |
Ulrika TÖRNVALL, Cecilia ORELLANA-COCA, Rajni HATTI-KAUL, et al. Stability of immobilized Candida antarctica lipase B during chemo-enzymatic epoxidation of fatty acids[J]. Enzyme and Microbial Technology, 2007, 40(3): 447-451.
|
28 |
MARCUCCI Sílvio M P, ARAKI Carina A, SILVA Lidiane S DA, et al. Influence of the chain length of the fatty acids present in different oils and the pore diameter of the support on the catalytic activity of immobilized lipase for ethyl ester production[J].Brazilian Journal of Chemical Engineering, 2021, 38(3): 511-522.
|
29 |
XU Lili, QIN Yimin, SONG Yufeng, et al. Glutaraldehyde-crosslinked Rhizopus oryzae whole cells show improved catalytic performance in alkene epoxidation[J]. Microbial Cell Factories, 2023, 22(1): 33.
|
30 |
Cecilia ORELLANA-COCA, CAMOCHO Samuel, ADLERCREUTZ Dietlind, et al. Chemo-enzymatic epoxidation of linoleic acid: Parameters influencing the reaction[J]. European Journal of Lipid Science and Technology, 2005, 107(12): 864-870.
|