1 |
丁仲礼, 张涛. 碳中和: 逻辑体系与技术需求[M]. 北京: 科学出版社, 2022: 46.
|
|
DING Zhongli, ZHANG Tao. Carbon neutrality: Logical system and technical requirements[M]. Beijing: Science Press, 2022: 46.
|
2 |
谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211.
|
|
XIE Heping, REN Shihua, XIE Yachen, et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society, 2021, 46(7): 2197-2211.
|
3 |
QIAO Yuanting, LIU Weishan, GUO Ruonan, et al. Techno-economic analysis of integrated carbon capture and utilisation compared with carbon capture and utilisation with syngas production[J]. Fuel, 2023, 332: 125972.
|
4 |
MIDDLETON Richard S, ECCLES Jordan K. The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power[J]. Applied Energy, 2013, 108: 66-73.
|
5 |
WUEBBLES Donald J, JAIN Atul K. Concerns about climate change and the role of fossil fuel use[J]. Fuel Processing Technology, 2001, 71(1/2/3): 99-119.
|
6 |
LEE Soo Chool, CHOI Bo Yun, LEE Tae Jin, et al. CO2 absorption and regeneration of alkali metal-based solid sorbents[J]. Catalysis Today, 2006, 111(3/4): 385-390.
|
7 |
Hyeonho JOO, CHO Sung June, NA Kyungsu. Control of CO2 absorption capacity and kinetics by MgO-based dry sorbents promoted with carbonate and nitrate salts[J]. Journal of CO2 Utilization, 2017, 19: 194-201.
|
8 |
CAI Tianyi, CHEN Xiaoping, TANG Hongjian, et al. Unraveling the disparity of CO2 sorption on alkali carbonates under high humidity[J]. Journal of CO2 Utilization, 2021, 53: 101737.
|
9 |
GUO Yafei, ZHAO Chuanwen, LI Changhai. Thermogravimetric analysis of carbonation behaviors of several potassium-based sorbents in low concentration CO2 [J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1): 441-451.
|
10 |
ZHAO Chuanwen, CHEN Xiaoping, ZHAO Changsui. Study on CO2 capture using dry potassium-based sorbents through orthogonal test method[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 655-658.
|
11 |
ZHAO Chuanwen, CHEN Xiaoping, ZHAO Changsui, et al. Carbonation and hydration characteristics of dry potassium-based sorbents for CO2 capture[J]. Energy & Fuels, 2009, 23(3): 1766-1769.
|
12 |
LI Bingyun, DUAN Yuhua, LUEBKE David, et al. Advances in CO2 capture technology: A patent review[J]. Applied Energy, 2013, 102: 1439-1447.
|
13 |
蔡天意. 高效钠基脱碳吸收剂开发及反应机理研究[D]. 南京: 东南大学, 2020.
|
|
CAI Tianyi. R&D for an efficient sodium-based CO2 solid sorbent and study on its bicarbonation/regeneration mechanism[D]. Nanjing: Southeast University, 2020.
|
14 |
董伟, 陈晓平, 余帆, 等. 钠基负载型固体CO2吸收剂碳酸化反应特性[J]. 煤炭学报, 2015, 40(9): 2200-2206.
|
|
DONG Wei, CHEN Xiaoping, YU Fan, et al. Carbonation characteristics of sodium-based solid sorbents for CO2 capture[J]. Journal of China Coal Society, 2015, 40(9): 2200-2206.
|
15 |
CAI Tianyi, CHEN Xiaoping, Karl JOHNSON J, et al. Understanding and improving the kinetics of bulk carbonation on sodium carbonate[J]. The Journal of Physical Chemistry C, 2020, 124(42): 23106-23115.
|
16 |
KAZEMI Hossein, SHAHHOSSEINI Shahrokh, BAZYARI Amin, et al. A study on the effects of textural properties of γ-Al2O3 support on CO2 capture capacity of Na2CO3 [J]. Process Safety and Environmental Protection, 2020, 138: 176-185.
|
17 |
KAZEMI Hossein, SHAHHOSSEINI Shahrokh, AMIRI Mohsen. Optimization of CO2 capture process using dry sodium-based sorbents[J]. Iranian Journal of Chemistry & Chemical Engineering-International English Edition, 2021, 40(4): 1179-1194.
|
18 |
LIU Xue, KHINAST Johannes G, GLASSER Benjamin J. A parametric investigation of impregnation and drying of supported catalysts[J]. Chemical Engineering Science, 2008, 63(18): 4517-4530.
|
19 |
CAI Tianyi, CHEN Xiaoping, ZHONG Jian, et al. Understanding the morphology of supported Na2CO3/γ-AlOOH solid sorbent and its CO2 sorption performance[J]. Chemical Engineering Journal, 2020, 395: 124139.
|
20 |
BARTHE L, DESPORTES S, HEMATI M, et al. Synthesis of supported catalysts by dry impregnation in fluidized bed[J]. Chemical Engineering Research and Design, 2007, 85(6): 767-777.
|
21 |
BARTHE Laurie, PHILIPPOT Karine, CHAUDRET Bruno, et al. Nanoparticles deposit location control on porous particles during dry impregnation in a fluidized bed[J]. Powder Technology, 2014, 257: 198-202.
|
22 |
BARTHE L, HEMATI M, PHILIPPOT K, et al. Rhodium colloidal suspension deposition on porous silica particles by dry impregnation: Study of the influence of the reaction conditions on nanoparticles location and dispersion and catalytic reactivity[J]. Chemical Engineering Journal, 2009, 151(1/2/3): 372-379.
|
23 |
BARTHE L, HEMATI M, PHILIPPOT K, et al. Dry impregnation in fluidized bed: Drying and calcination effect on nanoparticles dispersion and location in a porous support[J]. Chemical Engineering Research and Design, 2008, 86(4): 349-358.
|
24 |
BARTHE L, DESPORTES S, STEINMETZ D, et al. Metallic salt deposition on porous particles by dry impregnation in fluidized bed: Effect of drying conditions on metallic nanoparticles distribution[J]. Chemical Engineering Research and Design, 2009, 87(7): 915-922.
|
25 |
SLOMAN Benjamin M, PLEASE Colin P, VAN GORDER Robert A. Homogenization of a shrinking core model for gas-solid reactions in granular particles[J]. SIAM Journal on Applied Mathematics, 2019, 79(1): 177-206.
|
26 |
PATTERSON A L. The scherrer formula for X-ray particle size determination[J]. Physical Review, 1939, 56(10): 978-982.
|