1 |
范涛, 初茉, 畅志兵. 蒙东褐煤热解技术工业应用进展[J]. 化工进展, 2021, 40(3): 1362-1370.
|
|
FAN Tao, CHU Mo, CHANG Zhibing. Industrial application progress of lignite pyrolysis technology in eastern area of Inner Mongolia, China[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1362-1370.
|
2 |
HE Qing, GUO Qinghua, UMEKI Kentaro, et al. Soot formation during biomass gasification: A critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110710.
|
3 |
YAN Lunjing, WANG Wenmin, LIU Yan, et al. The roles of low molecular compounds on the light aromatics formation during different rank coal pyrolysis[J]. Journal of the Energy Institute, 2022, 100: 129-136.
|
4 |
FU Daqing, LI Xiaohong, LI Wenying, et al. Catalytic upgrading of coal pyrolysis products over bio-char[J]. Fuel Processing Technology, 2018, 176: 240-248.
|
5 |
ZHAO Xiaoyan, ZONG Zhimin, CAO Jingpei, et al. Difference in chemical composition of carbon disulfide-extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals[J]. Fuel, 2008, 87(4/5): 565-575.
|
6 |
DYRKACZ G R, BLOOMQUIST C A A, HORWITZ E P. Laboratory scale separation of coal macerals[J]. Separation Science and Technology, 1981, 16(10): 1571-1588.
|
7 |
QIN Rongfang, WANG Lu, CAO Daiyong, et al. Thermal simulation experimental study on the difference of molecular structure evolution between vitrinite and inertinite in low-rank coal[J]. Frontiers in Earth Science, 2022, 10: 992017.
|
8 |
ZHAO Yunpeng, HU Haoquan, JIN Lijun, et al. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Processing Technology, 2011, 92(4): 780-786.
|
9 |
ZHAO Meng, WANG Anmin, CAO Daiyong, et al. Differences in macromolecular structure evolution during the pyrolysis of vitrinite and inertinite based on in situ FTIR and XRD measurements[J]. Energies, 2022, 15(15): 5334.
|
10 |
WANG J-H, CHANG L-P. Pyrolysis and gasification reactivity of several typical Chinese coals and their macerals[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015, 37(6): 670-678.
|
11 |
LEI Zhao, CHENG Zhanwang, LING Qiang, et al. Investigating the trigger mechanism of Shenfu bituminous coal pyrolysis[J]. Fuel, 2022, 313: 122995.
|
12 |
XU Fang, PAN Shuo, LIU Chunguang, et al. Construction and evaluation of chemical structure model of Huolinhe lignite using molecular modeling[J]. RSC Advances, 2017, 7(66): 41512-41519.
|
13 |
XU Fang, LIU Hui, WANG Qing, et al. Study of non-isothermal pyrolysis mechanism of lignite using ReaxFF molecular dynamics simulations[J]. Fuel, 2019, 256: 115884.
|
14 |
WANG Dong, PENG Zeyu, WANG Jun, et al. Study on pyrolysis behavior of the coal fractions based on macro maceral separation[J]. Fuel, 2021, 305: 121572.
|
15 |
BAI Boyang, QIANG Luyao, ZHANG Suisui, et al. Influence of coal structure change caused by different pretreatment methods on Shengli lignite pyrolysis[J]. Fuel, 2023, 332: 126089.
|
16 |
YIN Yanshan, WU Zihua, TAO Jianhang, et al. Investigation of the evolution of the chemical structure of bituminous coals and lignite during pyrolysis[J]. Crystals, 2022, 12(4): 444.
|
17 |
LIU Mengjie, BAI Jin, KONG Lingxue, et al. The correlation between coal char structure and reactivity at rapid heating condition in TGA and heating stage microscope[J]. Fuel, 2020, 260: 116318.
|
18 |
王延君, 赵云飞, 何润霞, 等. 褐煤显微组分及碱处理对其结构和燃烧性能的影响[J]. 煤炭学报, 2023, 48(4): 1736-1746.
|
|
WANG Yanjun, ZHAO Yunfei, HE Runxia, et al. Macerals of lignite and the effect of alkali treatment on the structure and combustion performance of lignite[J]. Journal of China Coal Society, 2023, 48(4): 1736-1746.
|
19 |
李首毅, 林雄超, 鲁倍倍, 等. 矿物质对高碱煤显微组分热解特性的影响[J]. 化工进展, 2019, 38(8): 3650-3657.
|
|
LI Shouyi, LIN Xiongchao, LU Beibei, et al. Effects of minerals on pyrolysis characteristics of maceral in high-alkali coal[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3650-3657.
|
20 |
SONG Huijuan, LIU Guangrui, ZHANG Jinzhi, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2017, 156: 454-460.
|
21 |
Zhao Yan, QIU Penghua, CHEN Gang, et al. Selective enrichment of chemical structure during first grinding of Zhundong coal and its effect on pyrolysis reactivity[J]. Fuel, 2017, 189: 46-56.
|
22 |
MA Li, YU Wencong, REN Lifeng, et al. Micro-characteristics of low-temperature coal oxidation in CO2/O2 and N2/O2 atmospheres[J]. Fuel, 2019, 246: 259-267.
|
23 |
GENG Wenhua, NAKAJIMA Tsunenori, TAKANASHI Hirokazu, et al. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1): 139-144.
|
24 |
Aldo D’ALESSIO, RASPOLLI-GALLETTI Anna Maria, LICURSI Domenico, et al. FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in vacuum: Correlation with volatile matter[J]. Journal of Combustion, 2013, 2013: 134234.
|
25 |
YU Zunyi, GUO Wei, YANG Panxi, et al. In-situ infrared and kinetic characteristics analysis on pyrolysis of tar-rich coal and macerals[J]. Fuel, 2023, 348: 128601.
|
26 |
TIAN Bin, QIAO Yingyun, BAI Lei, et al. Separation and structural characterization of groups from a high-volatile bituminous coal based on multiple techniques[J]. Fuel Processing Technology, 2017, 159: 386-395.
|
27 |
李耀高. 东曲2号煤大分子结构模型及其热反应性研究[D]. 太原: 太原理工大学, 2019.
|
|
LI Yaogao. Macromlecular structural model and thermal reactivity study of Dongqu No.2 coal[D]. Taiyuan: Taiyuan University of Technology, 2019.
|
28 |
司加康. 马兰8号煤大分子结构模型构建及分子模拟[D]. 太原: 太原理工大学, 2014.
|
|
SI Jiakang. Macromlecular structure model construction and molecular simulation of Malan No.8 coal[D]. Taiyuan: Taiyuan University of Technology, 2014.
|
29 |
张怀青, 周安宁, 李振, 等. 神府煤显微组分大分子及聚集态结构模型构建[J]. 中国矿业大学学报, 2023, 52(4): 796-812.
|
|
ZHANG Huaiqing, ZHOU Anning, LI Zhen, et al. Construction of macromolecular and aggregate structure models of Shenfu coal macerals[J]. Journal of China University of Mining & Technology, 2023, 52(4): 796-812.
|
30 |
LIU Jiaxun, YANG Xiuchao, JIANG Xue, et al. Pyrolysis mechanisms of coal extracts based on TG-FTIR and ReaxFF MD study[J]. Fuel Processing Technology, 2022, 227: 107124.
|
31 |
CHANG Haizhou, DENG Hongxiao, YANG Qun, et al. Interaction of vitrinite and inertinite of Bulianta coal in pyrolysis[J]. Fuel, 2017, 207: 643-649.
|
32 |
YAO Qiuxiang, MA Mingming, LIU Yongqi, et al. The structural and pyrolysis characteristics of vitrinite and inertinite from Shendong coal and the gasification performance of chars[J]. Journal of Analytical and Applied Pyrolysis, 2022, 164: 105519.
|
33 |
YAO Qiuxiang, MA Mingming, LIU Yongqi, et al. Pyrolysis characteristics of metal ion-exchanged Shendong coal and its char gasification performance[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105087.
|
34 |
BAI Yonghui, LV Peng, LI Fan, et al. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam[J]. Energy Conversion and Management, 2019, 184(1): 172-179.
|
35 |
LIN Xiongchao, LUO Meng, LI Shouyi, et al. The evolutionary route of coal matrix during integrated cascade pyrolysis of a typical low-rank coal[J]. Applied Energy, 2017, 199: 335-346.
|
36 |
SUN Ming, ZHANG Dan, YAO Qiuxiang, et al. Separation and composition analysis of GC/MS analyzable and unanalyzable parts from coal tar[J]. Energy & Fuels, 2018, 32(7): 7404-7411.
|
37 |
REN Lei, WANG Fei, CHENG Fangqin, et al. Mechanisms of gas generation from conventional and microwave pyrolysis of coal slime[J]. Chemical Engineering Journal, 2023, 452: 139388.
|
38 |
LIU Jiaxun, JIANG Xiumin, SHEN Jun, et al. Influences of particle size, ultraviolet irradiation and pyrolysis temperature on stable free radicals in coal[J]. Powder Technology, 2015, 272: 64-74.
|
39 |
ZHANG Kang, LI Yan, WANG Zhihua, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel, 2016, 185: 701-708.
|
40 |
CHONG Junkai, CHENG Xiang, XIAO Longheng, et al. Fine characterization of the macromolecular structure of Shanxi low-rank coal[J]. Journal of Molecular Structure, 2023, 1273: 134359.
|
41 |
李焕同, 朱志蓉, 乔军伟, 等. 陕北侏罗纪富镜煤和富惰煤分子结构的FTIR, XPS和13C NMR表征[J]. 光谱学与光谱分析, 2022, 42(8): 2624-2630.
|
|
LI Huantong, ZHU Zhirong, QIAO Junwei, et al. Molecular representations of Jurassic-aged vitrinite-rich and inertinite-rich coals in northern shannxi province by FTIR, XPS and 13C NMR[J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2624-2630.
|
42 |
SHI Lei, LIU Qingya, ZHOU Bin, et al. Interpretation of methane and hydrogen evolution in coal pyrolysis from the bond cleavage perspective[J]. Energy & Fuels, 2017, 31(1): 429-437.
|