Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1374-1386.DOI: 10.16085/j.issn.1000-6613.2023-0468
• Materials science and technology • Previous Articles
XU Zewen1(), WANG Ming1, WANG Qiang2, HOU Yingfei1()
Received:
2023-03-27
Revised:
2023-06-21
Online:
2024-04-11
Published:
2024-03-10
Contact:
HOU Yingfei
通讯作者:
侯影飞
作者简介:
徐泽文(1994—),男,博士研究生,研究方向为膜法碳捕集。E-mail:1057245074@qq.com。
基金资助:
CLC Number:
XU Zewen, WANG Ming, WANG Qiang, HOU Yingfei. Recent advances in amine-rich membrane for CO2 separation[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1374-1386.
徐泽文, 王明, 王强, 侯影飞. 胺基材料在二氧化碳分离膜领域研究进展[J]. 化工进展, 2024, 43(3): 1374-1386.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0468
方法 | 膜 | 测试条件 | 原料气组成 | CO2渗透性 | CO2/N2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|---|
涂覆法 | UHMW PVAm | 57℃/0.15psi(表压) | CO2/N2(20/80) | 839.0GPU | 161.0 | 2021 | [ |
PI-2-TFSI | 35℃/0.101MPa | 纯气 | 90.1Barrer | 21.9 | 2020 | [ | |
30% PS-MFI | 35℃/0.1MPa | CO2/N2(21/79) | 2397.0Barrer | 28.8 | 2021 | [ | |
20% ETS-10 | 35℃/0.1MPa | CO2/N2(21/79) | 1225.0Barrer | 36.6 | 2021 | [ | |
20% SAPO-34 | 35℃/0.1MPa | CO2/N2(21/79) | 2248.0Barrer | 33.2 | 2021 | [ | |
BAPP-PMDA | 30℃/0.1MPa | 纯气 | 192.0Barrer | 96.0 | 2021 | [ | |
BDAF-PMDA | 30℃/0.1MPa | 纯气 | 3135.0Barrer | 21.8 | 2021 | [ | |
MX/IL | 25℃/0.1MPa | CO2/N2(10/90) | 519.0GPU | 210.0 | 2022 | [ | |
Zr-Fc-SILM-460 | —/0.101MPa | 纯气 | 66.8Barrer | 216.9 | 2020 | [ | |
PIL-IL/GO | 25℃/0.0Pa | CO2/N2(410μL/L) | 3090.0GPU | 1189.0 | 2021 | [ | |
sIPN/IL | 20℃/0.0Pa | 纯气 | 508.0Barrer | 52.7 | 2021 | [ | |
mPEG-b-PAN/IL | 35℃/0.101MPa | 纯气 | 456.4Barrer | 61.4 | 2022 | [ | |
PIL-IL | 35℃/0.2atm | 纯气 | 2070.0Barrer | 24.6 | 2020 | [ | |
反应法 | PIP-CMC/TMC | 25℃/0.11MPa | CO2/N2(15/85) | 1479.0GPU | 119.0 | 2021 | [ |
TFN-BN | 25℃/0.3MPa | 纯气 | 44.6GPU | 38.8 | 2021 | [ | |
TFN-PDA@BN | 25℃/0.3MPa | 纯气 | 46.0GPU | 43.6 | 2021 | [ | |
TFN-PEI@BN | 25℃/0.3MPa | 纯气 | 47.0GPU | 46.9 | 2021 | [ | |
FIHN-PEGDME-500-180 | 35℃/3.5atm | 纯气 | 1566.8Barrer | 35.1 | 2019 | [ | |
FIHN-PEGDME-500-60 | 35℃/3.5atm | 纯气 | 1155.0Barrer | 44.9 | 2019 | [ | |
FIHN-PEGDME-500-16 | 35℃/3.5atm | 纯气 | 409.7Barrer | 36.6 | 2019 | [ | |
MEDβCD/PA-0.4 | 25℃/0.1MPa | 纯气 | 171.6GPU | 69.0 | 2023 | [ | |
MEDβCD/PA-0.5 | 25℃/0.1MPa | 纯气 | 222.5GPU | 53.6 | 2023 | [ | |
DNMDAm-CD0.20/TMC | 25℃/0.15MPa | CO2/N2(15/85) | 2792.0GPU | 171.0 | 2023 | [ | |
接枝法 | AOPIM-1 (9%) | 35℃/0.101MPa | 纯气 | 2483.6Barrer | 31.2 | 2020 | [ |
GO-EDA | 75℃/1.0psi | 纯气 | 137.0GPU | 155.0 | 2019 | [ | |
PDA/UIO-66 | 25℃/0.1MPa | 纯气 | 1115.0GPU | 47.4 | 2019 | [ | |
am-PTFE AF | 25℃/0.12MPa | CO2/N2(10/90) | 1200.0Barrer | 约1100.0 | 2022 | [ | |
PIM-co-UiO-6672h | 25℃/0.2MPa | 纯气 | 12498.0Barrer | 54.2 | 2018 | [ | |
MPCM9/1-MA-2 | 35℃/0.35MPa | 纯气 | 1450.0Barrer | 45.8 | 2018 | [ | |
PIM-1-IL3 | 25℃/100.0psi | 纯气 | 817.0Barrer | 35.5 | 2020 | [ | |
8%-VIm-GO/QCS(NaOH) | 25℃/0.2MPa | CO2/N2(10/90) | 533.0Barrer | 54.9 | 2020 | [ | |
PI-POEM (3∶1) | 35℃/15.0psi | 纯气 | 1220.0Barrer | 22.5 | 2023 | [ | |
掺杂法 | NUS-8-NH2/PIM-1 | 25℃/0.2MPa | CO2/N2(20/80) | 14638.0Barrer | 29.2 | 2022 | [ |
PDA10.3@NUIO-66/Pebax | 25℃/0.3MPa | 纯气 | 94.6Barrer | 70.6 | 2022 | [ | |
PAN-NH2/PEO | 35℃/0.5MPa | 纯气 | 1160.0Barrer | 73.0 | 2022 | [ | |
PVAM/ZIF-8@NENP-NH2 | 25℃/0.1MPa | 纯气 | 301.0GPU | 91.0 | 2022 | [ | |
PVAM/HMMP-1 | 25℃/0.1MPa | CO2/N2(15/85) | 2364.0GPU | 152.0 | 2021 | [ | |
PAA30 | 90℃/0.2MPa | CO2/N2(10/90) | 39.0GPU | 260.0 | 2018 | [ | |
10%MFC-β-alanine | 35℃/0.17MPa | CO2/N2(10/90) | 264.0Barrer | 50.0 | 2019 | [ | |
PI/TB | 35℃/100.0psi | 纯气 | 79.3Barrer | 18.0 | 2022 | [ | |
UKX-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 218.8Barrer | 146.0 | 2021 | [ | |
UKM-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 171.9Barrer | 159.0 | 2021 | [ | |
UKI-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 160.3Barrer | 278.0 | 2021 | [ | |
25% ZIF-UC-6/Pebax | 30℃/0.1~0.4MPa | CO2/N2(50/50) | 576.0Barrer | 86.2 | 2023 | [ |
方法 | 膜 | 测试条件 | 原料气组成 | CO2渗透性 | CO2/N2选择性 | 年份 | 文献 |
---|---|---|---|---|---|---|---|
涂覆法 | UHMW PVAm | 57℃/0.15psi(表压) | CO2/N2(20/80) | 839.0GPU | 161.0 | 2021 | [ |
PI-2-TFSI | 35℃/0.101MPa | 纯气 | 90.1Barrer | 21.9 | 2020 | [ | |
30% PS-MFI | 35℃/0.1MPa | CO2/N2(21/79) | 2397.0Barrer | 28.8 | 2021 | [ | |
20% ETS-10 | 35℃/0.1MPa | CO2/N2(21/79) | 1225.0Barrer | 36.6 | 2021 | [ | |
20% SAPO-34 | 35℃/0.1MPa | CO2/N2(21/79) | 2248.0Barrer | 33.2 | 2021 | [ | |
BAPP-PMDA | 30℃/0.1MPa | 纯气 | 192.0Barrer | 96.0 | 2021 | [ | |
BDAF-PMDA | 30℃/0.1MPa | 纯气 | 3135.0Barrer | 21.8 | 2021 | [ | |
MX/IL | 25℃/0.1MPa | CO2/N2(10/90) | 519.0GPU | 210.0 | 2022 | [ | |
Zr-Fc-SILM-460 | —/0.101MPa | 纯气 | 66.8Barrer | 216.9 | 2020 | [ | |
PIL-IL/GO | 25℃/0.0Pa | CO2/N2(410μL/L) | 3090.0GPU | 1189.0 | 2021 | [ | |
sIPN/IL | 20℃/0.0Pa | 纯气 | 508.0Barrer | 52.7 | 2021 | [ | |
mPEG-b-PAN/IL | 35℃/0.101MPa | 纯气 | 456.4Barrer | 61.4 | 2022 | [ | |
PIL-IL | 35℃/0.2atm | 纯气 | 2070.0Barrer | 24.6 | 2020 | [ | |
反应法 | PIP-CMC/TMC | 25℃/0.11MPa | CO2/N2(15/85) | 1479.0GPU | 119.0 | 2021 | [ |
TFN-BN | 25℃/0.3MPa | 纯气 | 44.6GPU | 38.8 | 2021 | [ | |
TFN-PDA@BN | 25℃/0.3MPa | 纯气 | 46.0GPU | 43.6 | 2021 | [ | |
TFN-PEI@BN | 25℃/0.3MPa | 纯气 | 47.0GPU | 46.9 | 2021 | [ | |
FIHN-PEGDME-500-180 | 35℃/3.5atm | 纯气 | 1566.8Barrer | 35.1 | 2019 | [ | |
FIHN-PEGDME-500-60 | 35℃/3.5atm | 纯气 | 1155.0Barrer | 44.9 | 2019 | [ | |
FIHN-PEGDME-500-16 | 35℃/3.5atm | 纯气 | 409.7Barrer | 36.6 | 2019 | [ | |
MEDβCD/PA-0.4 | 25℃/0.1MPa | 纯气 | 171.6GPU | 69.0 | 2023 | [ | |
MEDβCD/PA-0.5 | 25℃/0.1MPa | 纯气 | 222.5GPU | 53.6 | 2023 | [ | |
DNMDAm-CD0.20/TMC | 25℃/0.15MPa | CO2/N2(15/85) | 2792.0GPU | 171.0 | 2023 | [ | |
接枝法 | AOPIM-1 (9%) | 35℃/0.101MPa | 纯气 | 2483.6Barrer | 31.2 | 2020 | [ |
GO-EDA | 75℃/1.0psi | 纯气 | 137.0GPU | 155.0 | 2019 | [ | |
PDA/UIO-66 | 25℃/0.1MPa | 纯气 | 1115.0GPU | 47.4 | 2019 | [ | |
am-PTFE AF | 25℃/0.12MPa | CO2/N2(10/90) | 1200.0Barrer | 约1100.0 | 2022 | [ | |
PIM-co-UiO-6672h | 25℃/0.2MPa | 纯气 | 12498.0Barrer | 54.2 | 2018 | [ | |
MPCM9/1-MA-2 | 35℃/0.35MPa | 纯气 | 1450.0Barrer | 45.8 | 2018 | [ | |
PIM-1-IL3 | 25℃/100.0psi | 纯气 | 817.0Barrer | 35.5 | 2020 | [ | |
8%-VIm-GO/QCS(NaOH) | 25℃/0.2MPa | CO2/N2(10/90) | 533.0Barrer | 54.9 | 2020 | [ | |
PI-POEM (3∶1) | 35℃/15.0psi | 纯气 | 1220.0Barrer | 22.5 | 2023 | [ | |
掺杂法 | NUS-8-NH2/PIM-1 | 25℃/0.2MPa | CO2/N2(20/80) | 14638.0Barrer | 29.2 | 2022 | [ |
PDA10.3@NUIO-66/Pebax | 25℃/0.3MPa | 纯气 | 94.6Barrer | 70.6 | 2022 | [ | |
PAN-NH2/PEO | 35℃/0.5MPa | 纯气 | 1160.0Barrer | 73.0 | 2022 | [ | |
PVAM/ZIF-8@NENP-NH2 | 25℃/0.1MPa | 纯气 | 301.0GPU | 91.0 | 2022 | [ | |
PVAM/HMMP-1 | 25℃/0.1MPa | CO2/N2(15/85) | 2364.0GPU | 152.0 | 2021 | [ | |
PAA30 | 90℃/0.2MPa | CO2/N2(10/90) | 39.0GPU | 260.0 | 2018 | [ | |
10%MFC-β-alanine | 35℃/0.17MPa | CO2/N2(10/90) | 264.0Barrer | 50.0 | 2019 | [ | |
PI/TB | 35℃/100.0psi | 纯气 | 79.3Barrer | 18.0 | 2022 | [ | |
UKX-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 218.8Barrer | 146.0 | 2021 | [ | |
UKM-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 171.9Barrer | 159.0 | 2021 | [ | |
UKI-Pebax/mPSf | 25℃/0.15MPa | CO2/N2(15/85) | 160.3Barrer | 278.0 | 2021 | [ | |
25% ZIF-UC-6/Pebax | 30℃/0.1~0.4MPa | CO2/N2(50/50) | 576.0Barrer | 86.2 | 2023 | [ |
1 | 刘芬, 丰平仲, 朱顺妮, 等. 煤化工烟道气毒性成分对Chlorella pyrenoidosa生长和细胞成分的影响[J]. 化工进展, 2020, 39(11): 4668-4676. |
LIU Fen, FENG Pingzhong, ZHU Shunni, et al. Effects of toxic components of flue gas from coal chemical industry on growth and cell components of Chlorella pyrenoidosa [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4668-4676. | |
2 | 邹才能, 吴松涛, 杨智, 等. 碳中和战略背景下建设碳工业体系的进展、挑战及意义[J]. 石油勘探与开发, 2023, 50(1): 190-205. |
ZOU Caineng, WU Songtao, YANG Zhi, et al. Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy[J]. Petroleum Exploration and Development, 2023, 50(1): 190-205. | |
3 | ERANS M, SANZ-PÉREZ E S, HANAK D P, et al. Direct air capture: Process technology, techno-economic and socio-political challenges[J]. Energy & Environmental Science, 2022, 15(4): 1360-1405. |
4 | 张杰, 郭伟, 张博, 等. 空气中直接捕集CO2技术研究进展[J]. 洁净煤技术, 2021, 27(2): 57-68. |
ZHANG Jie, GUO Wei, ZHANG Bo, et al. Research progress on direct capture of CO2 from air[J]. Clean Coal Technology, 2021, 27(2): 57-68. | |
5 | 雷婷, 喻树楠, 周昶安, 等. 吸附法碳捕集固体胺吸附剂成型技术研究进展[J]. 化工进展, 2022, 41(12): 6213-6225. |
LEI Ting, YU Shunan, ZHOU Chang’an, et al. Research progress on the shaping technology of solid amine adsorbents for CO2 capture by adsorption method[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6213-6225. | |
6 | 王志, 原野, 生梦龙, 等. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
WANG Zhi, YUAN Ye, SHENG Menglong, et al. Membrane technology for carbon capture—Research status and prospects[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101. | |
7 | WANG Kunpeng, WANG Xiaomao, JANUSZEWSKI B, et al. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships[J]. Chemical Society Reviews, 2022, 51(2): 672-719. |
8 | LIU Chao, WANG Wenjing, YANG Bo, et al. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies[J]. Water Research, 2021, 195: 116976. |
9 | 陆诗建, 贡玉萍, 刘玲, 等. 有机胺CO2吸收技术研究现状与发展方向[J]. 洁净煤技术, 2022, 28(9): 44-54. |
LU Shijian, GONG Yuping, LIU Ling, et al. Research status and future development direction of CO2 absorption technology for organic amine[J]. Clean Coal Technology, 2022, 28(9): 44-54. | |
10 | HAN Yang, HO W S W. Polymeric membranes for CO2 separation and capture[J]. Journal of Membrane Science, 2021, 628: 119244. |
11 | DUBEY A, ARORA A. Advancements in carbon capture technologies: A review[J]. Journal of Cleaner Production, 2022, 373: 133932. |
12 | LIU Min, NOTHLING M D, ZHANG Sui, et al. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond[J]. Progress in Polymer Science, 2022, 126: 101504. |
13 | PAZANI F, SALEHI MALEH M, SHARIATIFAR M, et al. Engineered graphene-based mixed matrix membranes to boost CO2 separation performance: Latest developments and future prospects[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112294. |
14 | CHEN Binghong, XIE Hongli, SHEN Liguo, et al. Covalent organic frameworks: The rising-star platforms for the design of CO2 separation membranes[J]. Small, 2023,19(17): e2207313. |
15 | 赵国珂, 潘国元, 张杨, 等. 石墨烯基材料在CO2分离膜领域的研究进展[J]. 化工进展, 2022, 41(11): 5896-5911. |
ZHAO Guoke, PAN Guoyuan, ZHANG Yang, et al. Recent advances in graphene-based membranes for CO2 separation[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5896-5911. | |
16 | ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
17 | CHEN Zan, ZHANG Peng, WU Hong, et al. Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation[J]. Separation and Purification Technology, 2022, 288: 120682. |
18 | MA Cuihua, WANG Ming, WANG Zhi, et al. Recent progress on thin film composite membranes for CO2 separation[J]. Journal of CO2 Utilization, 2020, 42: 101296. |
19 | ZHAO Yanan, WINSTON HO W S. Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport[J]. Journal of Membrane Science, 2012, 415/416: 132-138. |
20 | TONG Zi, HO W S W. New sterically hindered polyvinylamine membranes for CO2 separation and capture[J]. Journal of Membrane Science, 2017, 543: 202-211. |
21 | PATE S G, XU Hui, O’BRIEN C P. Operando observation of CO2 transport intermediates in polyvinylamine facilitated transport membranes, and the role of water in the formation of intermediates, using transmission FTIR spectroscopy[J]. Journal of Materials Chemistry A, 2022, 10(8): 4418-4427. |
22 | JIANG Xu, Kunli GOH, WANG Rong. Air plasma assisted spray coating of Pebax-1657 thin-film composite membranes for post-combustion CO2 capture[J]. Journal of Membrane Science, 2022, 658: 120741. |
23 | MA Cuihua, LI Qinghua, WANG Zhi, et al. High performance membranes containing rigid contortion units prepared by interfacial polymerization for CO2 separation[J]. Journal of Membrane Science, 2022, 652: 120459. |
24 | LEE Chang Soo, MOON Juyoung, PARK Jung Tae, et al. Engineering CO2-philic pathway via grafting poly(ethylene glycol) on graphene oxide for mixed matrix membranes with high CO2 permeance[J]. Chemical Engineering Journal, 2023, 453: 139818. |
25 | THÜR R, VAN HAVERE D, VAN VELTHOVEN N, et al. Correlating MOF-808 parameters with mixed-matrix membrane(MMM) CO2 permeation for a more rational MMM development[J]. Journal of Materials Chemistry A, 2021, 9(21): 12782-12796. |
26 | XU Hui, PATE S G, O’BRIEN C P. Mathematical modeling of CO2 facilitated transport across polyvinylamine membranes with direct operando observation of amine carrier saturation[J]. Chemical Engineering Journal, 2023, 460: 141728. |
27 | WANG Ting, JIANG Lingli, ZHANG Yanling, et al. Fabrication of polyimide mixed matrix membranes with asymmetric confined mass transfer channels for improved CO2 separation[J]. Journal of Membrane Science, 2021, 637: 119653. |
28 | WANG Chenlu, WANG Yanlei, LIU Ju, et al. Entropy driving highly selective CO2 separation in nanoconfined ionic liquids[J]. Chemical Engineering Journal, 2022, 440: 135918. |
29 | KIM Taek-Joong, LI Bao’an, M-B HÄGG. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(23): 4326-4336. |
30 | KIM Taek-Joong, VRÅLSTAD H, SANDRU M, et al. Separation performance of PVAm composite membrane for CO2 capture at various pH levels[J]. Journal of Membrane Science, 2013, 428: 218-224. |
31 | CHEN Kai K, HAN Yang, ZHANG Zhi’en, et al. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine[J]. Journal of Membrane Science, 2021, 628: 119215. |
32 | HE Xuezhong, LINDBRÅTHEN A, KIM Taek-Joong, et al. Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas[J]. International Journal of Greenhouse Gas Control, 2017, 64: 323-332. |
33 | HE Xuezhong. Polyvinylamine-based facilitated transport membranes for post-combustion CO2 capture: Challenges and perspectives from materials to processes[J]. Engineering, 2021, 7(1): 124-131. |
34 | 膜法捕集二氧化碳示范装置通过测试[J]. 膜科学与技术, 2022, 42(1): 56. |
The demonstration device of carbon dioxide capture by membrane passed the test[J]. Membrane Science and Technology, 2022, 42(1): 56. | |
35 | SHENG Menglong, DONG Songlin, QIAO Zhihua, et al. Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture[J]. Journal of Membrane Science, 2021, 636: 119595. |
36 | YANG Hongjun, FAN Shuanshi, LANG Xuemei, et al. Economic comparison of three gas separation technologies for CO2 capture from power plant flue gas[J]. Chinese Journal of Chemical Engineering, 2011, 19(4): 615-620. |
37 | SANAEEPUR H, EBADI AMOOGHIN A, BANDEHALI S, et al. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering[J]. Progress in Polymer Science, 2019, 91: 80-125. |
38 | XU Xiaochen, WANG Jingjing, DONG Jie, et al. Ionic polyimide membranes containing Tröger’s base: Synthesis, microstructure and potential application in CO2 separation[J]. Journal of Membrane Science, 2020, 602: 117967. |
39 | SONG Ningning, MA Tengning, WANG Tianjiao, et al. Microporous polyimides with high surface area and CO2 selectivity fabricated from cross-linkable linear polyimides[J]. Journal of Colloid and Interface Science, 2020, 573: 328-335. |
40 | YERZHANKYZY A, GHANEM B S, WANG Yingge, et al. Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide[J]. Journal of Membrane Science, 2020, 595: 117512. |
41 | SOLANGI N H, ANJUM A, TANJUNG F A, et al. A review of recent trends and emerging perspectives of ionic liquid membranes for CO2 separation[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105860. |
42 | JIA Youyu, SHI Feng, LI Hongying, et al. Facile ionization of the nanochannels of lamellar membranes for stable ionic liquid immobilization and efficient CO2 separation[J]. ACS Nano, 2022, 16(9): 14379-14389. |
43 | DENG Zheng, WAN Ting, CHEN Danke, et al. Photothermal-responsive microporous nanosheets confined ionic liquid for efficient CO2 separation[J]. Small, 2020, 16(34): e2002699. |
44 | LEE Yunyang, GURKAN B. Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation[J]. Journal of Membrane Science, 2021, 638: 119652. |
45 | WANG Zhuyuan, LIANG Songmiao, KANG Yuan, et al. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes[J]. Progress in Polymer Science, 2021, 122: 101450. |
46 | YU Zhen, MA Songqi, TANG Zhaobin, et al. Amino acids as latent curing agents and their application in fully bio-based epoxy resins[J]. Green Chemistry, 2021, 23(17): 6566-6575. |
47 | LI Xu, WANG Zhi, HAN Xianglei, et al. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review[J]. Journal of Membrane Science, 2021, 640: 119765. |
48 | LI Shichun, WANG Zhi, YU Xingwei, et al. High-performance membranes with multi-permselectivity for CO2 separation[J]. Advanced Materials, 2012, 24(24): 3196-3200. |
49 | LI Nan, WANG Zhi, WANG Jixiao. Water-swollen carboxymethyl chitosan (CMC)/polyamide (PA) membranes with octopus-branched nanostructures for CO2 capture[J]. Journal of Membrane Science, 2022, 642: 119946. |
50 | WONG Kar Chun, GOH P S, SUZAIMI N D, et al. Tailoring the CO2-selectivity of interfacial polymerized thin film nanocomposite membrane via the barrier effect of functionalized boron nitride[J]. Journal of Colloid and Interface Science, 2021, 603: 810-821. |
51 | NIU Yuhui, CHEN Yuhao, BAO Shanshan, et al. Fabrication of polyarylate thin-film nanocomposite membrane based on graphene quantum dots interlayer for enhanced gas separation performance[J]. Separation and Purification Technology, 2022, 293: 121035. |
52 | SHI Yanshu, LIANG Jiachen, BABU SHRESTHA B, et al. Enhancing the CO2 plasticization resistance of thin polymeric membranes by designing Metal-polymer complexes[J]. Separation and Purification Technology, 2022, 289: 120699. |
53 | ZHU Bin, JIANG Xu, HE Shanshan, et al. Rational design of poly(ethylene oxide) based membranes for sustainable CO2 capture[J]. Journal of Materials Chemistry A, 2020, 8(46): 24233-24252. |
54 | HUANG Liang, LIU Junyi, LIN Haiqing. Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhanced CO2 permeability[J]. Journal of Membrane Science, 2020, 610: 118253. |
55 | MONDAL P, BEHERA P K, SINGHA N K. Macromolecular engineering in functional polymers via ‘click chemistry’ using triazolinedione derivatives[J]. Progress in Polymer Science, 2021, 113: 101343. |
56 | SHAO Lu, QUAN Shuai, CHENG Xiquan, et al. Developing cross-linked poly(ethylene oxide) membrane by the novel reaction system for H2 purification[J]. International Journal of Hydrogen Energy, 2013, 38(12): 5122-5132. |
57 | LI Songwei, JIANG Xu, YANG Qian, et al. Effects of amino functionalized polyhedral oligomeric silsesquioxanes on cross-linked poly(ethylene oxide) membranes for highly-efficient CO2 separation[J]. Chemical Engineering Research and Design, 2017, 122: 280-288. |
58 | LI Songwei, JIANG Xu, YANG Xiaobin, et al. Nanoporous framework “reservoir” maximizing low-molecular-weight enhancer impregnation into CO2-philic membranes for highly-efficient CO2 capture[J]. Journal of Membrane Science, 2019, 570/571: 278-285. |
59 | GUO Shiwei, WAN Yinhua, CHEN Xiangrong, et al. Loose nanofiltration membrane custom-tailored for resource recovery[J]. Chemical Engineering Journal, 2021, 409: 127376. |
60 | HE Shanshan, ZHU Bin, LI Songwei, et al. Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design[J]. Separation and Purification Technology, 2022, 284: 120277. |
61 | WANG Zhenggong, SHEN Qin, LIANG Jiachen, et al. Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance[J]. Separation and Purification Technology, 2020, 233: 116008. |
62 | ZHOU Fanglei, TIEN Huynh Ngoc, DONG Qiaobei, et al. Ultrathin, ethylenediamine-functionalized graphene oxide membranes on hollow fibers for CO2 capture[J]. Journal of Membrane Science, 2019, 573: 184-191. |
63 | WU Wufeng, LI Zhanjun, CHEN Yu, et al. Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture[J]. Environmental Science & Technology, 2019, 53(7): 3764-3772. |
64 | SANDRU M, SANDRU E M, INGRAM W F, et al. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes[J]. Science, 2022, 376(6588): 90-94. |
65 | COMESANA-GANDARA B, CHEN Jie, BEZZU C G, et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity[J]. Energy & Environmental Science, 2019, 12(9): 2733-2740. |
66 | TIEN-BINH N, RODRIGUE D, KALIAGUINE S. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control[J]. Journal of Membrane Science, 2018, 548: 429-438. |
67 | JIANG Xu, LI Songwei, HE Shanshan, et al. Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture[J]. Journal of Materials Chemistry A, 2018, 6(31): 15064-15073. |
68 | WANG Bo, SHENG Menglong, XU Jiayou, et al. Recent advances of gas transport channels constructed with different dimensional nanomaterials in mixed-matrix membranes for CO2 separation[J]. Small Methods, 2020, 4(3): 1900749. |
69 | PARK Chae-Young, KONG Chang-In, KIM Eun-Young, et al. High-flux CO2 separation using thin-film composite polyether block amide membranes fabricated by transient-filler treatment[J]. Chemical Engineering Journal, 2023, 455: 140883. |
70 | ZHAO Quan, LIAN Shaohan, LI Run, et al. Architecting MOFs-based mixed matrix membrane for efficient CO2 separation: Ameliorating strategies toward non-ideal interface[J]. Chemical Engineering Journal, 2022, 443: 136290. |
71 | PU Yunchuan, YANG Ziqi, WEE V, et al. Amino-functionalized NUS-8 nanosheets as fillers in PIM-1 mixed matrix membranes for CO2 separations[J]. Journal of Membrane Science, 2022, 641: 119912. |
72 | ZHENG Wenji, WANG Dongyue, RUAN Xuehua, et al. Pore engineering of MOFs through in situ polymerization of dopamine into the cages to boost gas selective screening of mixed-matrix membranes[J]. Journal of Membrane Science, 2022, 661: 120882. |
73 | ZHANG Xiaoxia, RONG Meng, QIN Peiyong, et al. PEO-based CO2-philic mixed matrix membranes compromising N-rich ultramicroporous polyaminals for superior CO2 capture[J]. Journal of Membrane Science, 2022, 644: 120111. |
74 | PRASAD B, MANDAL B. Preparation and characterization of CO2-selective facilitated transport membrane composed of chitosan and poly(allylamine) blend for CO2/N2 separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 419-429. |
75 | JANAKIRAM S, YU Xinyi, ANSALONI L, et al. Manipulation of fibril surfaces in nanocellulose-based facilitated transport membranes for enhanced CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33302-33313. |
76 | CHEN Xiuling, ZHANG Zhiguang, WU Lei, et al. Hydrogen bonding-induced 6FDA-DABA/TB polymer blends for high performance gas separation membranes[J]. Journal of Membrane Science, 2022, 655: 120575. |
77 | CHUAH Chong Yang, LEE Junghyun, BAO Yueping, et al. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation[J]. Journal of Membrane Science, 2021, 622: 119031. |
78 | HOU Mengjie, QI Wenbo, LI Lin, et al. Carbon molecular sieve membrane with tunable microstructure for CO2 separation: Effect of multiscale structures of polyimide precursors[J]. Journal of Membrane Science, 2021, 635: 119541. |
79 | GOUVEIA A S L, BUMENN E, ROHTLAID K, et al. Ionic liquid-based semi-interpenetrating polymer network (sIPN) membranes for CO2 separation[J]. Separation and Purification Technology, 2021, 274: 118437. |
80 | MIN Hyo Jun, KIM Young Jun, KANG Miso, et al. Crystalline elastomeric block copolymer/ionic liquid membranes with enhanced mechanical strength and gas separation properties[J]. Journal of Membrane Science, 2022, 660: 120837. |
81 | YIN Jian, ZHANG Chenchen, YU Yunfei, et al. Tuning the microstructure of crosslinked poly(ionic liquid) membranes and gels via a multicomponent reaction for improved CO2 capture performance[J]. Journal of Membrane Science, 2020, 593: 117405. |
82 | LI Xuyang, JIAO Chengli, ZHANG Xiaoqian, et al. Ultrathin polyamide membrane tailored by mono-(6-ethanediamine-6-deoxy)-β-cyclodextrin for CO2 separation[J]. Journal of Membrane Science, 2023, 666: 121165. |
83 | LI Nan, WANG Zhi, WANG Jixiao. Biomimetic hydroxypropyl-β-cyclodextrin (Hβ-CD)/polyamide (PA) membranes for CO2 separation[J]. Journal of Membrane Science, 2023, 668: 121211. |
84 | GUIVER M D, YAHIA M, DAL-CIN M M, et al. Gas transport in a polymer of intrinsic microporosity (PIM-1) substituted with pseudo-ionic liquid tetrazole-type structures[J]. Macromolecules, 2020, 53(20): 8951-8959. |
85 | YAN Zhikun, ZHANG Mengyao, SHI Feng, et al. Enhanced CO2 separation in membranes with anion-cation dual pathways[J]. Journal of CO2 Utilization, 2020, 38: 355-365. |
86 | KIM Ki Jung, CHAE Yunmi, AN Seong Jin, et al. Microphase-separated morphology controlled polyimide graft copolymer membranes for CO2 separation[J]. Separation and Purification Technology, 2023, 304: 122315. |
87 | ZHANG Xinru, REN Xiaofeng, WANG Yonghonget al. ZIF-8@NENP-NH2 embedded mixed matrix composite membranes utilized as CO2 capture[J]. Separation and Purification Technology, 2022, 303: 122195. |
88 | YUAN Ye, QIAO Zhihua, XU Jiayou, et al. Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels[J]. Journal of Membrane Science, 2021, 620: 118923. |
89 | WANG Bo, XU Jiayou, WANG Jixiao, et al. High-performance membrane with angstrom-scale manipulation of gas transport channels via polymeric decorated MOF cavities[J]. Journal of Membrane Science, 2021, 625: 119175. |
90 | LI Ning, MA Chao, YE Mao, et al. Mechanochemical synthesized amino-functionalized ultramicroporous ZIF based mixed-matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2023, 680: 121733. |
[1] | WANG Kai, YE Dingding, ZHU Xun, YANG Yang, CHEN Rong, LIAO Qiang. Performance of electrochemical reduction of CO2 by superaerophilic copper foam electrode with nanowires [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1232-1240. |
[2] | ZHAO Guoke, ZHANG Yang, LIU Yiqun. Membrane technologies for monovalent/divalent cation separation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1363-1373. |
[3] | YAO Fuchun, BI Yingying, TANG Chen, DU Minghui, LI Zeying, ZHANG Yaozong, SUN Xiaoming. Analysis of the mass transfer mechanism in a hollow fiber membrane ozone contact reactor [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1089-1097. |
[4] | ZHANG Ruikai, ZHANG Huishu, ZHENG Longyun, ZENG Aiwu. Effect of gas partial pressure on Rayleigh convection mass transfer characteristics during CO2 absorption [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 913-924. |
[5] | HE Lan, GAO Zhuwei, QI Xinyu, LI Chengxin, WANG Shihao, LIU Zhongxin. Research progress in hydrophobic modification of melamine sponge and its application in oil-water separation field [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 984-1000. |
[6] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[7] | TIAN Shihong, GUO Lei, LI Na, YUWEN Chao, XU Lei, GUO Shenghui, JU Shaohua. Scientific basis and development trend of microwave heating enhanced flash evaporation process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 135-144. |
[8] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[9] | LI Yunqi, XIE Hanfei, CUI Lirui, LU Shanfu. Fabrication of Nafion membranes with patterned microwire arrays and fuel cell performances [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 320-327. |
[10] | YUAN Liang, CONG Haifeng, LI Xingang. Research progress on gas-liquid flow and mass transfer characteristics in microchannels [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 34-48. |
[11] | PEI Wenyi, CHEN Ziyang, ZHAO Meng, JIANG Hong, CHEN Rizhi. Effect of pre-wetting on preparation and gas distribution performance of Janus ceramic membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 353-363. |
[12] | DU Cuihua, ZHANG Xi, WANG Xiaodong, HUANG Wei, ZHOU Ming. Preparation of PDA@PEBA2533 membranes for C3H6/N2 separation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 437-446. |
[13] | CHEN Le, CHONG Hailing, ZHANG Zhihui, HE Mingyang, CHEN Qun. Synthesis of Cu-BTC modified by CTAB and its adsorption and separation of xylene isomers [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 455-464. |
[14] | BU Xiangning, REN Xibing, TONG Zheng, NI Mengqian, NI Chao, XIE Guangyuan. Effect of power ultrasound on resource recycling and utilization of spent lithium-ion batteries: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 514-528. |
[15] | ZHOU Mei, ZENG Haojie, LU Junning, PU Ting, LIU Baoyu. Progress in the synthesis of hierarchical zeolites for diffusion intensification [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 76-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |