Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 6944-6956.DOI: 10.16085/j.issn.1000-6613.2023-2143
• Resources and environmental engineering • Previous Articles
XIAO Pianpian(
), ZHUO Chaoyue, ZHONG Jinrong, ZHANG Yuefei(
)
Received:2023-12-04
Revised:2024-02-14
Online:2025-01-11
Published:2024-12-15
Contact:
ZHANG Yuefei
通讯作者:
张跃飞
作者简介:肖翩翩(2000—),女,硕士研究生,研究方向为二氧化碳分离与利用。E-mail:1900413329@qq.com。
基金资助:CLC Number:
XIAO Pianpian, ZHUO Chaoyue, ZHONG Jinrong, ZHANG Yuefei. Recent advances on modification of metal-organic frameworks for CO2 capture[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6944-6956.
肖翩翩, 卓超越, 钟瑾荣, 张跃飞. 用于CO2捕获的金属有机框架材料改性研究进展[J]. 化工进展, 2024, 43(12): 6944-6956.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2143
| MOF | 金属中心 | 比表面积/m2·g-1 | CO2吸附容量/mmol·g-1 | 压力/MPa | 选择性CO2/N2 | 参考文献 |
|---|---|---|---|---|---|---|
| MIL-53 | Al | 634 | 10.4 | 30 | 50 | [ |
| MIL-53 | Mn0.27Al0.73 | 1748 | 11.8 | 30 | 83 | [ |
| MIL-53 | Mn0.5Al0.5 | 1817 | 13.3 | 30 | 95 | [ |
| MIL-53 | Mn0.6Al0.4 | 1576 | 12.8 | 30 | 45 | [ |
| HKUST-1 | Cu | 1440 | 3.4 | 1 | [ | |
| HKUST-1 | Li、Cu | 1000 | 2.6 | 2 | [ | |
| UiO-66 | Zr | 1455 | 4.3 | 20 | [ | |
| MOF-74 | Mg | 1640 | 8.0 | 1 | 233 | [ |
| MOF-74 | Zn0.14Mg0.86 | 1277 | 0.5 | 1 | [ | |
| MOF-74 | Zn0.48Mg0.52 | 794 | 2.1 | 1 | [ | |
| MOF-74 | Zn0.75Mg0.25 | 668 | 3.2 | 1 | [ | |
| MOF-74 | Ni | 1274 | 5.2 | 1.1 | 11.3 | [ |
| MOF-74 | Pd、Ni | 1115 | 12.2 | 32 | 14.6 | [ |
| MOF-74 | Co | 1404 | 3.7 | 1.1 | 9.7 | [ |
| MOF-74 | Pd、Co | 1088 | 11.4 | 32 | 12.4 | [ |
| MOF-5 | Zn | 1858 | 0.5 | 1 | [ | |
| MOF-11 | Zn | 2096 | 14.7 | 35 | [ | |
| MOF-210 | Zn | 6240 | 50 | [ | ||
| Cu3(BTC)2 | Cu | 1781 | 10.7 | 35 | [ | |
| MIL-100 | Fe | 1811 | 2.6 | 1 | 49.6 | [ |
| MIL-100 | Al、Fe | 1993 | 3.3 | 1 | 76.5 | [ |
| MIL-120 | Al | 3084 | 4.8 | 10 | [ | |
| [Ni6(OH)4(COO)8(H2O)6] | Ni | 468 | 1.4 | 1 | [ | |
| [Ni4.1Co1.9(OH)4(BTB)8/3(H2O)6] | Ni4.1Co1.9 | 491 | 1.7 | 1 | [ | |
| [Ni3.1Co2.9(OH)4(BTB)8/3(H2O)6] | Ni3.1Co2.9 | 526 | 1.9 | 1 | [ | |
| [Ni2.8Co3.2(OH)4(BTB)8/3(H2O)6] | Ni2.8Co3.2 | 819 | 2.3 | 1 | [ |
| MOF | 金属中心 | 比表面积/m2·g-1 | CO2吸附容量/mmol·g-1 | 压力/MPa | 选择性CO2/N2 | 参考文献 |
|---|---|---|---|---|---|---|
| MIL-53 | Al | 634 | 10.4 | 30 | 50 | [ |
| MIL-53 | Mn0.27Al0.73 | 1748 | 11.8 | 30 | 83 | [ |
| MIL-53 | Mn0.5Al0.5 | 1817 | 13.3 | 30 | 95 | [ |
| MIL-53 | Mn0.6Al0.4 | 1576 | 12.8 | 30 | 45 | [ |
| HKUST-1 | Cu | 1440 | 3.4 | 1 | [ | |
| HKUST-1 | Li、Cu | 1000 | 2.6 | 2 | [ | |
| UiO-66 | Zr | 1455 | 4.3 | 20 | [ | |
| MOF-74 | Mg | 1640 | 8.0 | 1 | 233 | [ |
| MOF-74 | Zn0.14Mg0.86 | 1277 | 0.5 | 1 | [ | |
| MOF-74 | Zn0.48Mg0.52 | 794 | 2.1 | 1 | [ | |
| MOF-74 | Zn0.75Mg0.25 | 668 | 3.2 | 1 | [ | |
| MOF-74 | Ni | 1274 | 5.2 | 1.1 | 11.3 | [ |
| MOF-74 | Pd、Ni | 1115 | 12.2 | 32 | 14.6 | [ |
| MOF-74 | Co | 1404 | 3.7 | 1.1 | 9.7 | [ |
| MOF-74 | Pd、Co | 1088 | 11.4 | 32 | 12.4 | [ |
| MOF-5 | Zn | 1858 | 0.5 | 1 | [ | |
| MOF-11 | Zn | 2096 | 14.7 | 35 | [ | |
| MOF-210 | Zn | 6240 | 50 | [ | ||
| Cu3(BTC)2 | Cu | 1781 | 10.7 | 35 | [ | |
| MIL-100 | Fe | 1811 | 2.6 | 1 | 49.6 | [ |
| MIL-100 | Al、Fe | 1993 | 3.3 | 1 | 76.5 | [ |
| MIL-120 | Al | 3084 | 4.8 | 10 | [ | |
| [Ni6(OH)4(COO)8(H2O)6] | Ni | 468 | 1.4 | 1 | [ | |
| [Ni4.1Co1.9(OH)4(BTB)8/3(H2O)6] | Ni4.1Co1.9 | 491 | 1.7 | 1 | [ | |
| [Ni3.1Co2.9(OH)4(BTB)8/3(H2O)6] | Ni3.1Co2.9 | 526 | 1.9 | 1 | [ | |
| [Ni2.8Co3.2(OH)4(BTB)8/3(H2O)6] | Ni2.8Co3.2 | 819 | 2.3 | 1 | [ |
| MOF | 改性基团 | 比表面积/m2·g-1 | CO2吸附容量/mmol·g-1 | 压力/MPa | CO2/N2选择性 | 参考文献 |
|---|---|---|---|---|---|---|
| Mg-MOF-74 | TEPA | 10.0 | [ | |||
| MOF-177 | 2000~4500 | 1.2 | 1 | 20 | [ | |
| MOF-177-PEI | PEI | 1145 | 2.8 | 1 | [ | |
| MOF-177-DETA | DETA | 1225 | 2.8 | 1 | [ | |
| MOF-177-TEPA | TEPA | 1380 | 3.8 | 1 | [ | |
| MOF-808 | 1706 | 14 | 1 | 35.9 | [ | |
| MOF-808-TEPA | TEPA | 814 | 1.1 | 1 | 84.4 | [ |
| MOF-808-ED | ED | 1289 | 1.2 | 1 | 48.4 | [ |
| MOF-808-DETA | DETA | 20 | 0.7 | 1 | 52.7 | [ |
| CuBTTri | 1770 | 3.7 | 1 | [ | ||
| Mmen-CuBTTri | Mmen | 870 | 4.2 | 1 | 327 | [ |
| MIL-100 | 1170 | 1.1 | 0.8 | 12.6 | [ | |
| MIL-100@PPD | PPD | 820 | 4.6 | 10 | [ | |
| EN@MIL-100 | EN | 657 | 0.9 | 0.8 | [ | |
| MIL-101 | 3125 | 1.0 | 1 | 2.3 | [ | |
| MIL-101@PPD | PPD | 1007 | 7.3 | 10 | [ | |
| MIL-101@PEI(50%) | PEI | 1802 | 3.1 | 1 | 22 | [ |
| MIL-101@PEI(70%) | PEI | 1112 | 4.0 | 1 | 84 | [ |
| MIL-101@PEI(100%) | PEI | 608 | 4.1 | 1 | 120 | [ |
| NH2-MIL-101 | —NH2 | 1569 | 3.3 | 1 | 16 | [ |
| MIL-53 | 1269 | 9.7 | 30 | [ | ||
| MIL-53@NH3 | NH3 | 989 | 10.8 | 30 | [ | |
| Mg2(dobpdc) | 3178 | 1.5 | 1 | [ | ||
| een-Mn2(dobpdc) | een | 4.25 | 0.15 | [ | ||
| En-Mg2(dobpdc) | En | 1253 | 3.6 | 0.15 | [ | |
| Den-Mg2(dobpdc) | Den | 840 | 4.8 | 1 | [ | |
| Men-Mg2(dobpdc) | Men | 1036 | 4.5 | 1 | [ | |
| Dmen-Mg2(dobpdc) | Dmen | 675 | 3.8 | 0.15 | 554 | [ |
| MOF | 改性基团 | 比表面积/m2·g-1 | CO2吸附容量/mmol·g-1 | 压力/MPa | CO2/N2选择性 | 参考文献 |
|---|---|---|---|---|---|---|
| Mg-MOF-74 | TEPA | 10.0 | [ | |||
| MOF-177 | 2000~4500 | 1.2 | 1 | 20 | [ | |
| MOF-177-PEI | PEI | 1145 | 2.8 | 1 | [ | |
| MOF-177-DETA | DETA | 1225 | 2.8 | 1 | [ | |
| MOF-177-TEPA | TEPA | 1380 | 3.8 | 1 | [ | |
| MOF-808 | 1706 | 14 | 1 | 35.9 | [ | |
| MOF-808-TEPA | TEPA | 814 | 1.1 | 1 | 84.4 | [ |
| MOF-808-ED | ED | 1289 | 1.2 | 1 | 48.4 | [ |
| MOF-808-DETA | DETA | 20 | 0.7 | 1 | 52.7 | [ |
| CuBTTri | 1770 | 3.7 | 1 | [ | ||
| Mmen-CuBTTri | Mmen | 870 | 4.2 | 1 | 327 | [ |
| MIL-100 | 1170 | 1.1 | 0.8 | 12.6 | [ | |
| MIL-100@PPD | PPD | 820 | 4.6 | 10 | [ | |
| EN@MIL-100 | EN | 657 | 0.9 | 0.8 | [ | |
| MIL-101 | 3125 | 1.0 | 1 | 2.3 | [ | |
| MIL-101@PPD | PPD | 1007 | 7.3 | 10 | [ | |
| MIL-101@PEI(50%) | PEI | 1802 | 3.1 | 1 | 22 | [ |
| MIL-101@PEI(70%) | PEI | 1112 | 4.0 | 1 | 84 | [ |
| MIL-101@PEI(100%) | PEI | 608 | 4.1 | 1 | 120 | [ |
| NH2-MIL-101 | —NH2 | 1569 | 3.3 | 1 | 16 | [ |
| MIL-53 | 1269 | 9.7 | 30 | [ | ||
| MIL-53@NH3 | NH3 | 989 | 10.8 | 30 | [ | |
| Mg2(dobpdc) | 3178 | 1.5 | 1 | [ | ||
| een-Mn2(dobpdc) | een | 4.25 | 0.15 | [ | ||
| En-Mg2(dobpdc) | En | 1253 | 3.6 | 0.15 | [ | |
| Den-Mg2(dobpdc) | Den | 840 | 4.8 | 1 | [ | |
| Men-Mg2(dobpdc) | Men | 1036 | 4.5 | 1 | [ | |
| Dmen-Mg2(dobpdc) | Dmen | 675 | 3.8 | 0.15 | 554 | [ |
| 方法改性 | 优点 | 缺点 |
|---|---|---|
| 多金属掺杂 | ①可以引入额外的活性位点,增加MOF与CO2之间的相互作用,提高CO2吸附能力 ②不同金属之间的协同效应可产生更好的CO2吸附性能 ③可以提高MOF的抗水性和热稳定性 | ①可能导致MOF的晶体结构变得复杂,制备过程较为烦琐,并且可能影响材料的稳定性和耐久性 ②需要对金属掺杂比例、位置和类型进行精确控制,制备工艺和实验条件较为严苛 ③表征方法复杂 |
| 复合材料 | ①可以利用其他功能材料的优势来增强CO2吸附性能,提高整个材料的稳定性 ②复合材料的制备相对简单,可以通过物理混合或化学修饰等方法实现 | ①复合材料的界面相互作用可能会影响材料的稳定性和吸附性能 ②复合材料的制备过程需要考虑材料的兼容性和界面的匹配,对工艺条件和材料选择有较高要求 |
| 构建缺陷 | ①引入缺陷,可以增加MOF的活性位点数量和表面积,提高CO2吸附能力 ②构建缺陷可以改变MOF的结构和电荷分布,增强与CO2分子之间的相互作用 ③制备方法较简单 | ①构建缺陷可能导致MOF的晶体结构不稳定,降低材料的耐久性和稳定性 ②构建缺陷的方法和效果需要进行精确控制,以避免对材料性能的不利影响 ③表征方法复杂,设计复杂 |
| 引入官能团 | ①引入特定的官能团可以增加MOF与CO2分子之间的化学吸附作用,提高CO2吸附能力 ②官能团的种类和密度可以根据需要进行调控,具有较高的灵活性和可控性 ③可调控性与灵活性高,适用MOF的种类以及官能团种类多 | ①引入官能团可能导致MOF的结构和晶体性质发生变化,可能降低材料的稳定性和耐久性 ②官能团的引入需要进行精确控制和优化,以确保其对CO2吸附性能的增强效果 |
| 方法改性 | 优点 | 缺点 |
|---|---|---|
| 多金属掺杂 | ①可以引入额外的活性位点,增加MOF与CO2之间的相互作用,提高CO2吸附能力 ②不同金属之间的协同效应可产生更好的CO2吸附性能 ③可以提高MOF的抗水性和热稳定性 | ①可能导致MOF的晶体结构变得复杂,制备过程较为烦琐,并且可能影响材料的稳定性和耐久性 ②需要对金属掺杂比例、位置和类型进行精确控制,制备工艺和实验条件较为严苛 ③表征方法复杂 |
| 复合材料 | ①可以利用其他功能材料的优势来增强CO2吸附性能,提高整个材料的稳定性 ②复合材料的制备相对简单,可以通过物理混合或化学修饰等方法实现 | ①复合材料的界面相互作用可能会影响材料的稳定性和吸附性能 ②复合材料的制备过程需要考虑材料的兼容性和界面的匹配,对工艺条件和材料选择有较高要求 |
| 构建缺陷 | ①引入缺陷,可以增加MOF的活性位点数量和表面积,提高CO2吸附能力 ②构建缺陷可以改变MOF的结构和电荷分布,增强与CO2分子之间的相互作用 ③制备方法较简单 | ①构建缺陷可能导致MOF的晶体结构不稳定,降低材料的耐久性和稳定性 ②构建缺陷的方法和效果需要进行精确控制,以避免对材料性能的不利影响 ③表征方法复杂,设计复杂 |
| 引入官能团 | ①引入特定的官能团可以增加MOF与CO2分子之间的化学吸附作用,提高CO2吸附能力 ②官能团的种类和密度可以根据需要进行调控,具有较高的灵活性和可控性 ③可调控性与灵活性高,适用MOF的种类以及官能团种类多 | ①引入官能团可能导致MOF的结构和晶体性质发生变化,可能降低材料的稳定性和耐久性 ②官能团的引入需要进行精确控制和优化,以确保其对CO2吸附性能的增强效果 |
| 1 | ZHANG Jun, WEBLEY Paul A, XIAO Penny. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas[J]. Energy Conversion and Management, 2008, 49(2): 346-356. |
| 2 | GHANBARI Taravat, ABNISA Faisal, DAUD Wan Mohd Ashri Wan. A review on production of metal organic frameworks (MOF) for CO2 adsorption[J]. The Science of the Total Environment, 2020, 707: 135090. |
| 3 | XIANG Shengchang, HE Yabing, ZHANG Zhangjing, et al. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions[J]. Nature Communications, 2012, 3: 954. |
| 4 | XIANG Zhonghua, HU Zan, CAO Dapeng, et al. Metal-organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping[J]. Angewandte Chemie International Edition, 2011, 50(2): 491-494. |
| 5 | XIN Chunling, REN Yang, ZHANG Zhaofei, et al. Enhancement of hydrothermal stability and CO2 adsorption of Mg-MOF-74/MCF composites[J]. ACS Omega, 2021, 6(11): 7739-7745. |
| 6 | 贾勐, 张嘉宾, 冯亚青, 等. 金属-卟啉框架材料在光催化领域的应用[J]. 化工学报, 2020, 71(9): 4046-4057. |
| JIA Meng, ZHANG Jiabin, FENG Yaqing, et al. Application of metal-porphyrin-based frameworks in photocatalysis[J]. CIESC Journal, 2020, 71(9): 4046-4057. | |
| 7 | YOUNAS Mohammad, REZAKAZEMI Mashallah, DAUD Muhammad, et al. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs)[J]. Progress in Energy and Combustion Science, 2020, 80: 100849. |
| 8 | BELMABKHOUT Youssef, GUILLERM Vincent, EDDAOUDI Mohamed. Low concentration CO2 capture using physical adsorbents: Are metal-organic frameworks becoming the new benchmark materials?[J]. Chemical Engineering Journal, 2016, 296: 386-397. |
| 9 | BOOT-HANDFORD Matthew E, ABANADES Juan C, ANTHONY Edward J, et al. Carbon capture and storage update[J]. Energy & Environmental Science, 2014, 7(1): 130-189. |
| 10 | ANIRUDDHA R, SREEDHAR I, REDDY Benjaram M. MOFs in carbon capture-past, present and future[J]. Journal of CO2 Utilization, 2020, 42: 101297. |
| 11 | XIAO Tong, LIU Dingxin. The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives[J]. Microporous and Mesoporous Materials, 2019, 283: 88-103. |
| 12 | ZULUAGA Sebastian, FUENTES-FERNANDEZ Erika M A, TAN Kui, et al. Understanding and controlling water stability of MOF-74[J]. Journal of Materials Chemistry A, 2016, 4(14): 5176-5183. |
| 13 | LOUGHRAN Ryan P, HURLEY Tara, Andrzej GŁADYSIAK, et al. CO2 capture from wet flue gas using a water-stable and cost-effective metal-organic framework[J]. Cell Reports Physical Science, 2023, 4(7): 101470. |
| 14 | LIN Hengyu, YANG Yihao, HSU Yu-Chuan, et al. Metal-organic frameworks for water harvesting and concurrent carbon capture: A review for hygroscopic materials[J]. Advanced Materials, 2023, 36(12): e2209073. |
| 15 | HOU Xinjuan, HE Peng, LI Huiquan, et al. Understanding the adsorption mechanism of C2H2, CO2, and CH4 in isostructural metal-organic frameworks with coordinatively unsaturated metal sites[J]. The Journal of Physical Chemistry C, 2013, 117(6): 2824-2834. |
| 16 | DAMAS Giane B, COSTA Luciano T, AHUJA Rajeev, et al. Understanding carbon dioxide capture on metal-organic frameworks from first-principles theory: The case of MIL-53(X), with X=Fe3+, Al3+, and Cu2+ [J]. The Journal of Chemical Physics, 2021, 155(2): 024701. |
| 17 | CHEN Tingting, WANG Fanfan, CAO Shuai, et al. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries[J]. Advanced Materials, 2022, 34(30): e2201779. |
| 18 | BOURRELLY Sandrine, LLEWELLYN Philip L, SERRE Christian, et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47[J]. Journal of the American Chemical Society, 2005, 127(39): 13519-13521. |
| 19 | 董刘毅. Al-MIL-53多孔材料的制备及其对苯系物吸附性能的研究[D]. 桂林: 广西师范大学, 2021. |
| DONG Liuyi. Preparation of Al-MIL-53 porous material and its adsorption performance for benzene series[D]. Guilin: Guangxi Normal University, 2021. | |
| 20 | ABID Hussein Rasool, RADA Zana Hassan, LIU Lihong, et al. Striking CO2 capture and CO2/N2 separation by Mn/Al bimetallic MIL-53[J]. Polyhedron, 2021, 193: 114898. |
| 21 | ABID Hussein Rasool, HANIF Aamir, KESHAVARZ Alireza, et al. CO2, CH4, and H2 adsorption performance of the metal-organic framework HKUST-1 by modified synthesis strategies[J]. Energy & Fuels, 2023, 37(10): 7260-7267. |
| 22 | ZHOU Lingling, NIU Zhaodong, JIN Xu, et al. Effect of lithium doping on the structures and CO2 adsorption properties of metal-organic frameworks HKUST-1[J]. ChemistrySelect, 2018, 3(45): 12865-12870. |
| 23 | FARRANDO-PÉREZ J, MARTINEZ-NAVARRETE G, GANDARA-LOE J, et al. Controlling the adsorption and release of ocular drugs in metal-organic frameworks: Effect of polar functional groups[J]. Inorganic Chemistry, 2022, 61(47): 18861-18872. |
| 24 | GARZÓN-TOVAR L, CARNÉ-SÁNCHEZ A, CARBONELL C, et al. Optimised room temperature, water-based synthesis of CPO-27-M metal-organic frameworks with high space-time yields[J]. Journal of Materials Chemistry A, 2015, 3(41): 20819-20826. |
| 25 | 耿莹, 张默贺, 付锦, 等. MOF-74及其复合物: 多样合成与广泛应用[J]. 化学进展, 2021, 33(12): 2283-2308. |
| GENG Ying, ZHANG Mohe, FU Jin, et al. MOF-74 and its compound: Diverse synthesis and broad application[J]. Progress in Chemistry, 2021, 33(12): 2283-2308. | |
| 26 | YANG Da-Ae, CHO Hye-Young, KIM Jun, et al. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method[J]. Energy & Environmental Science, 2012, 5(4): 6465-6473. |
| 27 | GAO Ziyu, LIANG Lin, ZHANG Xiao, et al. Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61334-61345. |
| 28 | ADHIKARI Abhijit Krishna, LIN Kuen-Song. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74(Ni, Co) by doping palladium-containing activated carbon[J]. Chemical Engineering Journal, 2016, 284: 1348-1360. |
| 29 | DENG Hexiang, DOONAN Christian J, FURUKAWA Hiroyasu, et al. Multiple functional groups of varying ratios in metal-organic frameworks[J]. Science, 2010, 327(5967): 846-850. |
| 30 | MILLWARD Andrew R, YAGHI Omar M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51): 17998-17999. |
| 31 | FURUKAWA Hiroyasu, Nakeun KO, GO Yong Bok, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428. |
| 32 | LE Van Nhieu, NGUYEN Van Cuong, NGUYEN Huu Trung, et al. Facile synthesis of bimetallic MIL-100(Fe, Al) for enhancing CO2 Adsorption performance[J]. Microporous and Mesoporous Materials, 2023, 360: 112716. |
| 33 | VOLKRINGER Christophe, LOISEAU Thierry, HAOUAS Mohamed, et al. Occurrence of uncommon infinite chains consisting of edge-sharing octahedra in a porous metal organic framework-type aluminum pyromellitate Al4(OH)8[C10O8H2](MIL-120): Synthesis, structure, and gas sorption properties[J]. Chemistry of Materials, 2009, 21(24): 5783-5791. |
| 34 | CUI Ping, LI Jijing, DONG Jie, et al. Modulating CO2 adsorption in metal-organic frameworks via metal-ion doping[J]. Inorganic Chemistry, 2018, 57(10): 6135-6141. |
| 35 | 吴栋. 金属-有机骨架材料吸附分离和膜分离性能研究[D]. 北京: 北京化工大学, 2013. |
| WU Dong. Studies on adsorption and membrane separation properties of metal-organic frameworks[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
| 36 | ABEDNATANZI Sara, GOHARI DERAKHSHANDEH Parviz, DEPAUW Hannes, et al. Mixed-metal metal-organic frameworks[J]. Chemical Society Reviews, 2019, 48(9): 2535-2565. |
| 37 | 胡建波. 金属有机骨架材料(MOFs)改性对CO2吸附性能的模拟研究[D]. 武汉: 华中科技大学, 2018. |
| HU Jianbo. Simulation study on CO2 adsorption performance modified by metal-organic framework materials (MOFs)[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
| 38 | GOYAL Prateek, PARUTHI Archini, MENON Dhruv, et al. Fe doped bimetallic HKUST-1 MOF with enhanced water stability for trapping Pb(Ⅱ) with high adsorption capacity[J]. Chemical Engineering Journal, 2022, 430: 133088. |
| 39 | PANDEY Ratnesh K. Bimetallic metal-organic frameworks (BMOFs) and their potential applications[M]//Metal-Organic Frameworks for Carbon Capture and Energy. American Chemical Society, 2021: 3-15. |
| 40 | LIN Li-Chiang, KIM Jihan, KONG Xueqian, et al. Understanding CO2 dynamics in metal-organic frameworks with open metal sites[J]. Angewandte Chemie International Edition, 2013, 52(16): 4410-4413. |
| 41 | SUMIDA Kenji, ROGOW David L, MASON Jarad A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 724-781. |
| 42 | TRICKETT Christopher A, HELAL Aasif, AL-MAYTHALONY Bassem A, et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nature Reviews Materials, 2017, 2(8): 17045. |
| 43 | RANI Poonam, KASNERYK Valeryia, OPANASENKO Maksym. MOF-inorganic nanocomposites: Bridging a gap with inorganic materials[J]. Applied Materials Today, 2022, 26: 101283. |
| 44 | LI Yang, KARIMI Meghdad, GONG Yunnan, et al. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications[J]. Matter, 2021, 4(7): 2230-2265. |
| 45 | RANGNEKAR N, MITTAL N, ELYASSI B, et al. Zeolite membranes—A review and comparison with MOFs[J]. Chemical Society Reviews, 2015, 44(20): 7128-7154. |
| 46 | YUAN Ning, ZHANG Xinling, WANG Longsheng. The marriage of metal-organic frameworks and silica materials for advanced applications[J]. Coordination Chemistry Reviews, 2020, 421: 213442. |
| 47 | CHEN Chong, LI Bingxue, ZHOU Lijin, et al. Synthesis of hierarchically structured hybrid materials by controlled self-assembly of metal-organic framework with mesoporous silica for CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 23060-23071. |
| 48 | SUI Ruohong, CHARPENTIER Paul. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids[J]. Chemical Reviews, 2012, 112(6): 3057-3082. |
| 49 | LIN Li-Chiang, PAIK Dooam, KIM Jihan. Understanding gas adsorption in MOF-5/graphene oxide composite materials[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(18): 11639-11644. |
| 50 | 王亮, 田聃, 刘安琪, 等. GO@MIL-101的制备及其对水中Cr(Ⅵ)的去除[J]. 化工学报, 2017, 68(5): 2105-2111. |
| WANG Liang, TIAN Dan, LIU Anqi, et al. Preparation of graphene oxide@MIL-101 composite and its performance in Cr(Ⅵ) removal from aqueous solution[J]. CIESC Journal, 2017, 68(5): 2105-2111. | |
| 51 | 孙雪娇. 一种新型MOF/氧化石墨复合材料及其对油气的吸附性能[D]. 广州: 华南理工大学, 2015. |
| SUN Xuejiao. A novel MOF/graphite oxide composite and its adsorption performance toward oil vapor[D]. Guangzhou: South China University of Technology, 2015. | |
| 52 | YAO Bing, WANG Yuqi, FANG Zhou, et al. Electrodepositing MOFs into laminated graphene oxide membrane for CO2 capture[J]. Microporous and Mesoporous Materials, 2023, 361: 112758. |
| 53 | ZHANG Yiqiong, TAO Li, XIE Chao, et al. Defect engineering on electrode materials for rechargeable batteries[J]. Advanced Materials, 2020, 32(7): e1905923. |
| 54 | YUAN Meng, KERMANIAN Mehraneh, AGARWAL Tarun, et al. Defect engineering in biomedical sciences[J]. Advanced Materials, 2023, 35(38): e2304176. |
| 55 | ZHENG Yun, SLADE Tyler J, HU Lei, et al. Defect engineering in thermoelectric materials: What have we learned?[J]. Chemical Society Reviews, 2021, 50(16): 9022-9054. |
| 56 | Marleny RODRÍGUEZ-ALBELO L, Elena LÓPEZ-MAYA, HAMAD Said, et al. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series[J]. Nature Communications, 2017, 8: 14457. |
| 57 | AN Haifei, TIAN Weijian, LU Xin, et al. Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74[J]. Chemical Engineering Journal, 2023, 469: 144052. |
| 58 | FANG Zhenlan, BUEKEN Bart, DE VOS Dirk E, et al. Defect-engineered metal-organic frameworks[J]. Angewandte Chemie International Edition, 2015, 54(25): 7234-7254. |
| 59 | Jaewoong LIM, LEE Seonghwan, SHARMA Amitosh, et al. Ligand functionalization of defect-engineered Ni-MOF-74[J]. RSC Advances, 2022, 12(48): 31451-31455. |
| 60 | JIANG Danni, HUANG Chao, ZHU Jian, et al. Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs)[J]. Coordination Chemistry Reviews, 2021, 444: 214064. |
| 61 | LIU Yang, LIU Jing, CHANG Ming, et al. Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks[J]. Fuel, 2012, 95: 521-527. |
| 62 | SU Xiao, BROMBERG Lev, MARTIS Vladimir, et al. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: Structural characterization and enhanced CO2 adsorption[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 11299-11306. |
| 63 | KIM Hye Ryeon, YOON Tae-Ung, KIM Seung-Ik, et al. Beyond pristine MOFs: Carbon dioxide capture by metal-organic frameworks (MOFs)-derived porous carbon materials[J]. RSC Advances, 2017, 7(3): 1266-1270. |
| 64 | GAIKWAD Sanjit, KIM Yeonhee, GAIKWAD Ranjit, et al. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105523. |
| 65 | Hyeok Joon JUN, YOO Dong Kyu, JHUNG Sung Hwa. Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to capture CO2 under low pressure[J]. Journal of CO2 Utilization, 2022, 58: 101932. |
| 66 | MCDONALD Thomas M, D’ALESSANDRO Deanna M, KRISHNA Rajamani, et al. Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal-organic framework CuBTTri[J]. Chemical Science, 2011, 2(10): 2022-2028. |
| 67 | STEENHAUT Timothy, FUSARO Luca, ROBEYNS Koen, et al. Functionalization of mono and bimetallic MIL-100(Al, Fe) MOFs by ethylenediamine: Postfunctionalization, brønsted acido-basicity, and unusual CO2 sorption behavior[J]. Inorganic Chemistry, 2021, 60(21): 16666-16677. |
| 68 | BABAEI Majideh, SALEHI Samira, ANBIA Mansoor, et al. Improving CO2 adsorption capacity and CO2/CH4 selectivity with amine functionalization of MIL-100 and MIL-101[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1657-1662. |
| 69 | LIN Yichao, YAN Qiuju, KONG Chunlong, et al. Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture[J]. Scientific Reports, 2013, 3: 1859. |
| 70 | LIN Yichao, KONG Chunlong, CHEN Liang. Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture[J]. RSC Advances, 2012, 2(16): 6417-6419. |
| 71 | 杨琰, 王莎, 张志娟, 等. 氨气改性的NH3@MIL-53(Cr)吸附CO2和CH4的性能[J]. 化工学报, 2014, 65(5): 1759-1763. |
| YANG Yan, WANG Sha, ZHANG Zhijuan, et al. CO2 and CH4 adsorption performance of modified MIL-53(Cr) via ammonia vapor[J]. CIESC Journal, 2014, 65(5): 1759-1763. | |
| 72 | BOSE Saptasree, SENGUPTA Debabrata, MALLIAKAS Christos D, et al. Suitability of a diamine functionalized metal-organic framework for direct air capture[J]. Chemical Science, 2023, 14(35): 9380-9388. |
| 73 | KANG Minjung, KIM Jeong Eun, KANG Dong Won, et al. A diamine-grafted metal-organic framework with outstanding CO2 capture properties and a facile coating approach for imparting exceptional moisture stability[J]. Journal of Materials Chemistry A, 2019, 7(14): 8177-8183. |
| 74 | LEE Woo Ram, HWANG Sang Yeon, Dae Won RYU, et al. Diamine-functionalized metal-organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism[J]. Energy & Environmental Science, 2014, 7(2): 744-751. |
| 75 | Hyuna JO, LEE Woo Ram, KIM Nam Woo, et al. Fine-tuning of the carbon dioxide capture capability of diamine-grafted metal-organic framework adsorbents through amine functionalization[J]. ChemSusChem, 2017, 10(3): 541-550. |
| 76 | LEE Woo Ram, Hyuna JO, YANG Liming, et al. Exceptional CO2 working capacity in a heterodiamine-grafted metal-organic framework[J]. Chemical Science, 2015, 6(7): 3697-3705. |
| 77 | ZHANG Hui, YANG Liming, GANZ Eric. Adsorption properties and microscopic mechanism of CO2 capture in 1,1-dimethyl-1,2-ethylenediamine-grafted metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 18533-18540. |
| 78 | 张会. 烷基乙二胺功能化的M2(dobpdc)系列捕获CO2微观机理的第一性原理研究[D]. 武汉: 华中科技大学, 2021. |
| ZHANG Hui. First-principles study on the microscopic mechanism of CO2 capture by alkylethylenediamine-functionalized M2(dobpdc) series[D]. Wuhan: Huazhong University of Science and Technology, 2021. | |
| 79 | YE Sheng, JIANG Xin, RUAN Linwei, et al. Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal-organic frameworks: Adsorption, separation and regeneration investigations[J]. Microporous and Mesoporous Materials, 2013, 179: 191-197. . |
| 80 | ZELENKA Tomas, SIMANOVA Klaudia, SAINI Robin, et al. Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine[J]. Scientific Reports, 2022, 12(1): 17366. |
| 81 | CHOI Sunho, WATANABE Taku, Tae-Hyun BAE, et al. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases[J]. The Journal of Physical Chemistry Letters, 2012, 3(9): 1136-1141. |
| 82 | SIEGELMAN Rebecca L, MCDONALD Thomas M, GONZALEZ Miguel I, et al. Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(30): 10526-10538. |
| 83 | MCDONALD Thomas M, MASON Jarad A, KONG Xueqian, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks[J]. Nature, 2015, 519(7543): 303-308. |
| 84 | LIN Yichao, KONG Chunglong, ZHANG Qiuju, et al. Metal-organic frameworks for carbon dioxide capture and methane storage[J]. Advanced Energy Materials, 2017, 7(4): 1601296. |
| 85 | BAHAMON Daniel, WEI Anlu, BUILES Santiago, et al. Effect of amine functionalization of MOF adsorbents for enhanced CO2 capture and separation: A molecular simulation study[J]. Frontiers in Chemistry, 2021, 8: 574622. |
| 86 | CHANG Guanjun, XU Yewei, ZHANG Lin, et al. Enhanced carbon dioxide capture in an indole-based microporous organic polymer via synergistic effects of indoles and their adjacent carbonyl groups[J]. Polymer Chemistry, 2018, 9(35): 4455-4459. |
| 87 | HU Jianbo, LIU Yang, LIU Jing, et al. Computational screening of alkali, alkaline earth, and transition metals alkoxide-functionalized metal-organic frameworks for CO2 capture[J]. The Journal of Physical Chemistry C, 2018, 122(33): 19015- 19024. |
| 88 | 黄宏亮. 金属-有机骨架材料的合成与吸附分离性能研究[D]. 北京: 北京化工大学, 2014. |
| HUANG Hongliang. Studies on synthesis and adsorption separation property of metal-organic frameworks[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
| 89 | FEDOROV Dmitry V, SADHUKHAN Mainak, Martin STÖHR, et al. Quantum-mechanical relation between atomic dipole polarizability and the van der Waals radius[J]. Physical Review Letters, 2018, 121(18): 183401. |
| 90 | LI Haiying, MENG Bo, MAHURIN Shannon M, et al. Carbohydrate based hyper-crosslinked organic polymers with —OH functional groups for CO2 separation[J]. Journal of Materials Chemistry A, 2015, 3(42): 20913-20918. |
| 91 | LI Xiuyuan, LI Yongzhi, YANG Yun, et al. Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes[J]. Chemical Communications, 2017, 53(96): 12970-12973. |
| 92 | SUN Yiyang, DU Qiuzheng, WANG Fangqi, et al. Active metal single-sites based on metal-organic frameworks: Construction and chemical prospects[J]. New Journal of Chemistry, 2021, 45(3): 1137-1162. |
| 93 | WANG Zhenqiang, COHEN Seth M. Postsynthetic modification of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1315-1329. |
| 94 | James CLAIRE F, SOLOMOS Marina A, KIM Jungkil, et al. Structural and electronic switching of a single crystal 2D metal-organic framework prepared by chemical vapor deposition[J]. Nature Communications, 2020, 11(1): 5524. |
| 95 | LEE Jiyoung, Dae-Woon LIM, DEKURA Shun, et al. MOP × MOF: Collaborative combination of metal-organic polyhedra and metal-organic framework for proton conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12639-12646. |
| 96 | CHEN Changwei, FENG Xiangbo, ZHU Qing, et al. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture[J]. Inorganic Chemistry, 2019, 58(4): 2717-2728. |
| 97 | ZHAO Zhimin, DING Jiawei, ZHU Rongmei, et al. The synthesis and electrochemical applications of core-shell MOFs and their derivatives[J]. Journal of Materials Chemistry A, 2019, 7(26): 15519-15540. |
| 98 | YU Yanping, PAN Mengmeng, JIANG Ming, et al. Facile synthesis of self-assembled three-dimensional flower-like Cu-MOF and its pyrolytic derivative Cu-N-C450 for diverse applications[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109400. |
| 99 | MOORE Samuel C, SMITH Michael R, TRETTIN James L, et al. Kinetic impacts of defect sites in metal-organic framework catalysts under varied driving forces[J]. ACS Energy Letters, 2023, 8(3): 1397-1407. |
| 100 | FU Yao, FORSE Alexander C, KANG Zhengzhong, et al. One-dimensional alignment of defects in a flexible metal-organic framework[J]. Science Advances, 2023, 9(6): eade6975. |
| 101 | MOHAMEDALI Mohanned, IBRAHIM Hussameldin, HENNI Amr. Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture[J]. Chemical Engineering Journal, 2018, 334: 817-828. |
| 102 | KIM Se-Na, LEE Yuri, HONG Seung-Hwan, et al. Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis[J]. Catalysis Today, 2015, 245: 54-60. |
| [1] | YU Mengjie, WU Yutong, LUO Faxiang, DOU Yibo. Research progress on structural design of photocatalysts for diluted carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 335-350. |
| [2] | XIE Yulin, RAU Jui-yeh, HUANG Jian, HAO Jiayi, WANG Youyi, HUANG Qi. Preparation of continuous ZIF-8 membrane and its progress in hydrogen separation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 403-418. |
| [3] | CHEN Gaoxiang, WANG Rongchang, JIANG Jiacheng. Mechanism of cathodic electron transfer and hydrogen–mediated enhanced measures in microbial electrosynthesis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 504-516. |
| [4] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
| [5] | WANG Bowei, ZHENG Mingzhen, WANG Lemeng, FU Dong, WANG Shan, ZHU Shengjun, ZHAO Kun, ZHANG Pan. Preparation of NaOH for CO2 capture by electrolysis of Na2SO4 [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 604-614. |
| [6] | SHI Lei, WANG Qian, ZHAO Xiaosheng, LIU Hongchen, CHE Yuanjun, DUAN Yu, LI Qing. Synthesis and methyl blue adsorption performance of oil shale ash-based zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 650-661. |
| [7] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
| [8] | YANG Xinheng, JI Zhiyong, GUO Zhiyuan, LIU Qi, ZHANG Panpan, WANG Jing, LIU Jie, BI Jingtao, ZHAO Yingying, YUAN Junsheng. Preparation of lithium aluminum layered double hydroxides and their lithium deintercalation performance [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5262-5274. |
| [9] | SUN Yan, XIE Xiaoyang, FENG Qianying, ZHENG Lu, HE Jiaojie, YANG Liwei, BAI Bo. Preparation of forward osmosis membrane modified by tannic acid-iron (Ⅲ) and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5309-5319. |
| [10] | ZHANG Wei, SONG Quanbin, ZHOU Yunhe, DONG Mengyao, LI Jie, WU Qiao, FU Yehao, LIANG Yaocheng, YIN Yanshan, CHENG Shan, SONG Jian. Selectivity of ion conductive membranes in all-vanadium flow battery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4859-4870. |
| [11] | LIAO Xu, ZHOU Jun, LUO Jie, ZENG Ruilin, WANG Zeyu, LI Zunhua, LIN Jinqing. Research progress on CO2 cycloaddition reaction catalyzed by porous ionic polymers [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4925-4940. |
| [12] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
| [13] | LIU Li, FENG Bo, WEN Yang, GU Qixiong. Research progress in synthesis, functionalization and metal adsorption of silica-based mesoporous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5063-5078. |
| [14] | CAO Shuyang, SHI Jingbo, DONG Youming, LYU Jianxiong. Water adsorption and desorption isotherms and thermodynamic properties of Eucalyptus obliqua woods at different temperatures [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5095-5105. |
| [15] | OU Hongxiang, MIN Zheng, XUE Honglai, CAO Haizhen, BI Haipu, WANG Junqi. Effect of hydrophobic modified magnesium oxide nanoparticles on the properties of short fluorocarbon chain foam [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5177-5184. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |