Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (9): 5262-5274.DOI: 10.16085/j.issn.1000-6613.2023-1393
• Resources and environmental engineering • Previous Articles
YANG Xinheng1,2(), JI Zhiyong1,2(), GUO Zhiyuan1,2, LIU Qi1,2, ZHANG Panpan1,2, WANG Jing1,2, LIU Jie1,2, BI Jingtao1,2, ZHAO Yingying1,2, YUAN Junsheng1,2
Received:
2023-08-11
Revised:
2023-10-26
Online:
2024-09-30
Published:
2024-09-15
Contact:
JI Zhiyong
杨新衡1,2(), 纪志永1,2(), 郭志远1,2, 刘萁1,2, 张盼盼1,2, 汪婧1,2, 刘杰1,2, 毕京涛1,2, 赵颖颖1,2, 袁俊生1,2
通讯作者:
纪志永
作者简介:
杨新衡(1998—),男,硕士研究生,研究方向为化学工程。E-mail:yxh508761762@163.com。
基金资助:
CLC Number:
YANG Xinheng, JI Zhiyong, GUO Zhiyuan, LIU Qi, ZHANG Panpan, WANG Jing, LIU Jie, BI Jingtao, ZHAO Yingying, YUAN Junsheng. Preparation of lithium aluminum layered double hydroxides and their lithium deintercalation performance[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5262-5274.
杨新衡, 纪志永, 郭志远, 刘萁, 张盼盼, 汪婧, 刘杰, 毕京涛, 赵颖颖, 袁俊生. 锂铝层状双金属氢氧化物的制备及其锂脱嵌过程[J]. 化工进展, 2024, 43(9): 5262-5274.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1393
元素 | 前体中各离子质量分数/% | Li/Al-LDHs各离子质量分数/% |
---|---|---|
Li | 13.39 | 2.61 |
Al | 22.84 | 23.12 |
Cl | 17.19 | 13.22 |
元素 | 前体中各离子质量分数/% | Li/Al-LDHs各离子质量分数/% |
---|---|---|
Li | 13.39 | 2.61 |
Al | 22.84 | 23.12 |
Cl | 17.19 | 13.22 |
T/K | Qe,exp/mg·g-1 | 准一级动力学模型 | 准二级动力学模型 | ||||
---|---|---|---|---|---|---|---|
K1/min-1 | Qe,cal/mg·g-1 | R2 | K2/g·mg-1·min-1 | Qe,cal/mg·g-1 | R2 | ||
288.15 | 6.674 | -0.021 | 3.057 | 0.906 | 0.143 | 6.805 | 0.998 |
303.15 | 7.278 | -0.025 | 3.013 | 0.824 | 0.137 | 7.377 | 0.999 |
318.15 | 8.350 | -0.027 | 3.016 | 0.841 | 0.116 | 8.490 | 0.999 |
T/K | Qe,exp/mg·g-1 | 准一级动力学模型 | 准二级动力学模型 | ||||
---|---|---|---|---|---|---|---|
K1/min-1 | Qe,cal/mg·g-1 | R2 | K2/g·mg-1·min-1 | Qe,cal/mg·g-1 | R2 | ||
288.15 | 6.674 | -0.021 | 3.057 | 0.906 | 0.143 | 6.805 | 0.998 |
303.15 | 7.278 | -0.025 | 3.013 | 0.824 | 0.137 | 7.377 | 0.999 |
318.15 | 8.350 | -0.027 | 3.016 | 0.841 | 0.116 | 8.490 | 0.999 |
T/K | Langmuir | Freundlich | Sips | |||||||
---|---|---|---|---|---|---|---|---|---|---|
KL/L·mg-1 | qmax/mg·g-1 | RL | R2 | KF/mg1-n ·L n ·g-1 | 1/n | R2 | KS/mg1-n ·L n ·g-1 | qmax/mg·g-1 | R2 | |
288.15 | 0.093 | 6.701 | 0.027 | 0.989 | 2.781 | 0.154 | 0.896 | 0.122 | 6.857 | 0.985 |
303.15 | 0.080 | 7.495 | 0.032 | 0.985 | 2.771 | 0.174 | 0.885 | 0.118 | 0.782 | 0.981 |
318.15 | 0.050 | 8.504 | 0.050 | 0.990 | 2.468 | 0.212 | 0.911 | 0.019 | 8.033 | 0.983 |
T/K | Langmuir | Freundlich | Sips | |||||||
---|---|---|---|---|---|---|---|---|---|---|
KL/L·mg-1 | qmax/mg·g-1 | RL | R2 | KF/mg1-n ·L n ·g-1 | 1/n | R2 | KS/mg1-n ·L n ·g-1 | qmax/mg·g-1 | R2 | |
288.15 | 0.093 | 6.701 | 0.027 | 0.989 | 2.781 | 0.154 | 0.896 | 0.122 | 6.857 | 0.985 |
303.15 | 0.080 | 7.495 | 0.032 | 0.985 | 2.771 | 0.174 | 0.885 | 0.118 | 0.782 | 0.981 |
318.15 | 0.050 | 8.504 | 0.050 | 0.990 | 2.468 | 0.212 | 0.911 | 0.019 | 8.033 | 0.983 |
T/K | ΔG | ΔH | ΔS |
---|---|---|---|
288.15 | -12.18 | 10.58 | 79.03 |
303.15 | -12.29 | 10.58 | 79.03 |
318.15 | -12.47 | 10.58 | 79.03 |
T/K | ΔG | ΔH | ΔS |
---|---|---|---|
288.15 | -12.18 | 10.58 | 79.03 |
303.15 | -12.29 | 10.58 | 79.03 |
318.15 | -12.47 | 10.58 | 79.03 |
原料液 | Li+ | Mg2+ | Ca+ | Na+ | K+ | Cl- | |
---|---|---|---|---|---|---|---|
卤水1 | 0.39 | 120.33 | 0.05 | 1.39 | 0.48 | 182.62 | — |
卤水2 | 0.25 | 89.10 | 0.23 | 1.81 | 0.73 | 83.27 | 28.10 |
卤水3 | 0.25 | 8.42 | 0.04 | 16.73 | 2.43 | 31.71 | 23.99 |
海水1 | 0.60 | 3.60 | 0.06 | 130.78 | 3.79 | 210.31 | — |
原料液 | Li+ | Mg2+ | Ca+ | Na+ | K+ | Cl- | |
---|---|---|---|---|---|---|---|
卤水1 | 0.39 | 120.33 | 0.05 | 1.39 | 0.48 | 182.62 | — |
卤水2 | 0.25 | 89.10 | 0.23 | 1.81 | 0.73 | 83.27 | 28.10 |
卤水3 | 0.25 | 8.42 | 0.04 | 16.73 | 2.43 | 31.71 | 23.99 |
海水1 | 0.60 | 3.60 | 0.06 | 130.78 | 3.79 | 210.31 | — |
吸附材料 | 原料液种类 | 参考文献 | |
---|---|---|---|
Li/Al-LDHs | 7.27 | 含0.4g/L Li+、120g/L Mg2+的察尔汗盐湖老卤 | [ |
L-LDHs | 3.40 | 含0.14g/L Li+、92g/L Na+的地下卤水 | [ |
粒状Li/Al-LDHs | 6.40 | 含1.1g/L Li+、76.78g/L Na+的东台吉乃尔卤水 | [ |
Li/Al-LDHs | 5.48 | 乌鲁米耶湖天然卤水 | [ |
LDHs | <7.00 | c(Li+)=330mg/L的盐湖卤水 | [ |
Li/Al-LDHs | 5.69 | c(Li+)=350mg/L的Li-Na-MgCl2体系 | [ |
Li/Al-LDHs | 8.350 | c(Li+)=350mg/L、c(Mg2+)=120g/L的卤水 | 本工作 |
吸附材料 | 原料液种类 | 参考文献 | |
---|---|---|---|
Li/Al-LDHs | 7.27 | 含0.4g/L Li+、120g/L Mg2+的察尔汗盐湖老卤 | [ |
L-LDHs | 3.40 | 含0.14g/L Li+、92g/L Na+的地下卤水 | [ |
粒状Li/Al-LDHs | 6.40 | 含1.1g/L Li+、76.78g/L Na+的东台吉乃尔卤水 | [ |
Li/Al-LDHs | 5.48 | 乌鲁米耶湖天然卤水 | [ |
LDHs | <7.00 | c(Li+)=330mg/L的盐湖卤水 | [ |
Li/Al-LDHs | 5.69 | c(Li+)=350mg/L的Li-Na-MgCl2体系 | [ |
Li/Al-LDHs | 8.350 | c(Li+)=350mg/L、c(Mg2+)=120g/L的卤水 | 本工作 |
1 | ZHANG Xueqian, DONG Mengfei, XIONG Yali, et al. Aqueous rechargeable Li+/Na+ hybrid ion battery with high energy density and long cycle life[J]. Small, 2020, 16(41): 2003585. |
2 | AUDI G, BERSILLON O, BLACHOT J, et al. The Nubase evaluation of nuclear and decay properties[J]. Nuclear Physics A, 2003, 729(1): 3-128. |
3 | SWAIN Basudev. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017, 172: 388-403. |
4 | CHEN Shangqing, CHEN Zishen, WEI Zhenwei, et al. Titanium-based ion sieve with enhanced post-separation ability for high performance lithium recovery from geothermal water[J]. Chemical Engineering Journal, 2021, 410: 128320. |
5 | 韩佳欢, 乜贞, 方朝合, 等. 中国锂资源供需现状分析[J]. 无机盐工业, 2021, 53(12): 61-66. |
HAN Jiahuan, NIE Zhen, FANG Chaohe, et al. Analysis of existing circumstance of supply and demand on China’s lithium resources[J]. Inorganic Chemicals Industry, 2021, 53(12): 61-66. | |
6 | 王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5): 848-866. |
WANG He, HUANG Liang, BAI Hongyang, et al. Types, distribution, development and utilization of lithium mineral resources in China: Review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5): 848-866. | |
7 | 康锦, 卫丽娜, 成怀刚. 离子液体用于盐湖卤水萃取提锂的研究进展[J]. 无机盐工业, 2022, 54(1): 1-6. |
KANG Jin, WEI Lina, CHENG Huaigang. Research progress on application of ionic liquids in extracting lithium from salt lakes[J]. Inorganic Chemicals Industry, 2022, 54(1): 1-6. | |
8 | LI Xiaowei, CHEN Wang, CHEN Linlin, et al. Temperature-responsive liquid-liquid extraction of Li+ from high Mg/Li ratio brine[J]. Separation and Purification Technology, 2023, 322: 124309. |
9 | HUA Junyuan, MA Xiaohua, JI Wenhui, et al. Unveiling the mechanism of liquid-liquid extraction separation of Li+/Mg2+ using tributyl phosphate/ionic liquid mixed solvents[J]. Journal of Molecular Liquids, 2022, 365: 120080. |
10 | JI Pengyuan, JI Zhiyong, CHEN Qingbai, et al. Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis[J]. Separation and Purification Technology, 2018, 207: 1-11. |
11 | HUA Junyuan, HE Jintao, PEI Hongchang, et al. Supported ionic liquid membrane contactor with crown ether functionalized polyimide membrane for high-efficient Li+/Mg2+ selective separation[J]. Journal of Membrane Science, 2023, 687: 122038. |
12 | GUO Zhiyuan, JI Zhiyong, WANG Jing, et al. Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient: The driving mode of constant current-constant voltage[J]. Desalination, 2022, 533: 115767. |
13 | ZOU Fan, XU Tao, WU Zhensheng, et al. Lithium and sodium adsorption on monolayer tellurene[J]. The Journal of Physical Chemistry C, 2020, 124(51): 28074-28082. |
14 | MARTHI R, YANG P, OWUSU-FORDJOUR E Y, et al. Role of stacking faults and hydroxyl groups on the lithium adsorption/desorption properties of layered H2TiO3 [J]. Materials Today Advances, 2022, 14: 100237. |
15 | LIU Gui, ZHAO Zhongwei, HE Lihua. Highly selective lithium recovery from high Mg/Li ratio brines[J]. Desalination, 2020, 474: 114185. |
16 | ZHOU Guolang, CHEN Linlin, LI Xiaowei, et al. Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine[J]. Green Energy & Environment, 2023, 8(4): 1081-1090. |
17 | GUO Zhiyuan, JI Zhiyong, WANG Jing, et al. Development of electrochemical lithium extraction based on a rocking chair system of LiMn2O4/Li1- x Mn2O4: Self-driven plus external voltage driven[J]. Separation and Purification Technology, 2021, 259: 118154. |
18 | ZHAO Muhua, ZHAO Chong, ZHANG Yang, et al. One-pot granulation of cross-linked PVA/LMO for efficient lithium recovery from gas field brine[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110859. |
19 | CHEN Fangjie, LIN Yi, ZHANG Xun, et al. Preparation and evaluation of H2TiO3@attapulgite with high adsorption and selectivity for lithium ions[J]. Materials Letters, 2023, 345: 134471. |
20 | RUI Jicheng, DENG Ning, ZHAO Yiying, et al. Activation of persulfate via Mn doped Mg/Al layered double hydroxide for effective degradation of organics: Insights from chemical and structural variability of catalyst[J]. Chemosphere, 2022, 302: 134849. |
21 | SHENG Bingchun, SU Haiping, YU Jianguo, et al. Lithium extraction process from low grade Na+/K+ brines dependent on high layer charge layered double hydroxides[J]. Desalination, 2023, 565: 116856. |
22 | ZHONG Jing, LIN Sen, YU Jianguo. Li+ adsorption performance and mechanism using lithium/aluminum layered double hydroxides in low grade brines[J]. Desalination, 2021, 505: 114983. |
23 | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
SHENG Bingchun, YU Jianguo, LIN Sen. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent[J]. CIESC Journal, 2023, 74(8): 3375-3385. | |
24 | 张文丁, 邓小川, 朱朝梁, 等. 以PAC为原料制备锂吸附剂及其吸附性能的研究[J]. 无机盐工业, 2020, 52(2): 12-16. |
ZHANG Wending, DENG Xiaochuan, ZHU Chaoliang, et al. Preparation of lithium adsorbent from PAC and its adsorption properties[J]. Inorganic Chemicals Industry, 2020, 52(2): 12-16. | |
25 | DONG Mingzhe, LUO Qinglong, LI Jun, et al. Reconstruction of MgAl-layered double hydroxides to LiAl-layered double hydroxides for scalable lithium extraction from salt lake brine[J]. Minerals Engineering, 2023, 202: 108293. |
26 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
27 | 奚干卿. 离子半径的研究[J]. 海南师范学院学报(自然科学版), 2001, 14(3): 68-75. |
XI Ganqing. A study of ionic radius[J]. Journal of Hainan Normal University (Natural Science), 2001, 14(3): 68-75. | |
28 | VOLKOV A G, PAULA S, DEAMER D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J]. Bioelectrochemistry and Bioenergetics, 1997, 42(2): 153-160. |
29 | QIAN Hongbo, HUANG Shaodong, BA Zhichen, et al. HTO/cellulose aerogel for rapid and highly selective Li+ recovery from seawater[J]. Molecules, 2021, 26(13): 4054. |
30 | JIANG Huixiong, YANG Ying, SUN Shuying, et al. Adsorption of lithium ions on lithium-aluminum hydroxides: Equilibrium and kinetics[J]. The Canadian Journal of Chemical Engineering, 2020, 98(2): 544-555. |
31 | MA Bin, Sanghwa OH, SHIN Won Sik, et al. Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM)[J]. Desalination, 2011, 276(1/2/3): 336-346. |
32 | ISUPOV V P, KOTSUPALO N P, NEMUDRY A P, et al. Aluminium hydroxide as selective sorbent of lithium salts from brines and technical solutions[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier 1999: 621-652. |
33 | HU Fangping, LIN Sen, LI Ping, et al. Quantitative effects of desorption intensity on structural stability and readsorption performance of lithium/aluminum layered double hydroxides in cyclic Li+ extraction from brines with ultrahigh Mg/Li ratio[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13539-13548. |
34 | HEIDARI N, MOMENI P. Selective adsorption of lithium ions from Urmia Lake onto aluminum hydroxide[J]. Environmental Earth Sciences, 2017, 76(16): 551. |
35 | RYABTSEV A D. Benefication technology for lithium-containing hydrogenic mineral products[J]. Journal of Mining Science, 2005, 41(6): 573-582. |
36 | JIANG Huixiong, ZHANG Shuiyi, YANG Ying, et al. Synergic and competitive adsorption of Li-Na-MgCl2 onto lithium-aluminum hydroxides[J]. Adsorption, 2020, 26(7): 1039-1049. |
37 | SALEM Mansour A S, KHAN Amjad Mumtaz, MANEA Yahiya Kadaf. A novel nano-hybrid carbon architecture as chemo sensor for natural hazards: Active adsorption of Rose Bengal dye and detection of hazard pollutants at ppb level[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107032. |
38 | LIU Yuting, WANG Mingkuang, CHEN Tsan Yao, et al. Arsenate sorption on lithium/aluminum layered double hydroxide intercalated by chloride and on gibbsite: sorption isotherms, envelopes, and spectroscopic studies[J]. Environmental Science & Technology, 2006, 40(24): 7784-7789. |
[1] | LIU Li, FENG Bo, WEN Yang, GU Qixiong. Research progress in synthesis, functionalization and metal adsorption of silica-based mesoporous materials [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5063-5078. |
[2] | CAO Shuyang, SHI Jingbo, DONG Youming, LYU Jianxiong. Water adsorption and desorption isotherms and thermodynamic properties of Eucalyptus obliqua woods at different temperatures [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5095-5105. |
[3] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
[4] | WANG Jia, LI Wencui, WU Fan, GAO Xinqian, LU Anhui. Regulation active components distribution of NiMo/Al2O3 catalysts for hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4393-4402. |
[5] | ZHENG Yunxiang, GAO Yilun, LI Yanru, LIU Qinglin, ZHANG Haoteng, WANG Xiangpeng. Preparation and adsorption properties of porous double-network hydrogels modified by nitrilotriacetic acid anhydride [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4542-4549. |
[6] | LIU Yucan, GAO Zhonglu, XU Xinyi, JI Xianguo, ZHANG Yan, SUN Hongwei, WANG Gang. Adsorption performance and mechanism of diuron from water by calcium-modified water hyacinth-based biochar [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4630-4641. |
[7] | HU Junjie, HUANG Xingjun, LEI Cheng, YANG Min, LAN Yuanxiao, LUO Jianhong. Advanced treatment of small molecular organic in shale gas produced water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4674-4680. |
[8] | WU Zhe, QU Shuguang, FENG Lianxiang, ZENG Xiangchu. Adsorption performance and mechanism of sodium alginate/microcrystalline cellulose composite hydrogel for aqueous methyl orange and methylene blue [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4681-4693. |
[9] | HUANG Hong, OUYANG Haomin, YANG Yijing, LI Changlin, CHEN Shuona. Adsorption-degradation mechanism of tris(2-chloroethyl)phosphate by a composite adsorbent of zero-valent iron sulfide and microorganism [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4704-4713. |
[10] | GUO Changbin, LI Mengmeng, FENG Menghan, YUAN Tian, ZHANG Keqiang, LUO Yanli, WANG Feng. Preparation of Ce-doped La-based perovskite and its adsorption properties for phosphate and phytic acid in water [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4748-4756. |
[11] | MAO Huakai, YU Yang, ZHANG Yue, XIA Guangkun, WU Yuntao, LOU Leyao, NIU Wenjuan, LIU Nian. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. |
[12] | BIAN Weibai, ZHANG Ruixuan, PAN Jianming. Research progress on preparation methods of inorganic metal lithium ion sieve materials [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4173-4186. |
[13] | HUANG Jun, ZHANG Yingjuan, LIN Yintong, WEI Xuechun, WU Yutong, WU Gaobo, MO Junlin, ZHAO Zhenxia, ZHAO Zhongxing. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3964-3971. |
[14] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[15] | LIU Kefeng, LIU Taoran, CAI Yong, HU Xuesheng, DONG Weigang, ZHOU Huaqun, GAO Fei. Progress in research and engineering demonstration of CO2 capture technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2901-2914. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |