Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6271-6292.DOI: 10.16085/j.issn.1000-6613.2023-1914
• Materials science and technology • Previous Articles
MA Xianggang1(), DING Yuan1,2, ZHANG Junge1, LIU Yingliang1, XU Shengang1(), CAO Shaokui1
Received:
2023-10-31
Revised:
2024-01-02
Online:
2024-12-07
Published:
2024-11-15
Contact:
XU Shengang
马香港1(), 丁远1,2, 张俊格1, 刘应良1, 徐慎刚1(), 曹少魁1
通讯作者:
徐慎刚
作者简介:
马香港(1997—),男,硕士研究生,研究方向为光催化剂(降解源于高分子材料的有机污染物、分解水制氢)的合成与性能评价。E-mail:18438621627@163.com。
基金资助:
CLC Number:
MA Xianggang, DING Yuan, ZHANG Junge, LIU Yingliang, XU Shengang, CAO Shaokui. Progress of photocatalytic degradation of bisphenol A by modified g-C3N4[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6271-6292.
马香港, 丁远, 张俊格, 刘应良, 徐慎刚, 曹少魁. 改性g-C3N4光催化降解双酚A的研究进展[J]. 化工进展, 2024, 43(11): 6271-6292.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1914
光催化剂 | 异质结类型 | 光源条件 | 催化剂使用量/mg | BPA浓度/mg·L-1 | 性能 | 参考文献 |
---|---|---|---|---|---|---|
g-C3N4/BiOI | Ⅱ | 氙灯300W,λ>400nm | 50 | 20 | 60min降解100% | [ |
C3N4/Bi4O5I2 | Ⅱ | 氙灯300W,λ>400nm | 50 | 10 | 60min降解100% | [ |
D35-TiO2/g-C3N4 | Ⅱ | 氙灯300W,λ>400nm | 50 | 10 | 15min降解100% | [ |
N-KTiNbO5/g-C3N4 | Ⅱ | 氙灯300W,λ>420nm | 100 | 2 | 120min降解100% | [ |
g-C3N4/BiOCl x I1-x | Ⅱ | 氙灯500W,λ>420nm | 30 | 10 | 40min降解100% | [ |
g-C3N4/BiOBr | Ⅱ | 氙灯300W,λ>420nm | 10 | 10 | 120min降解96.6% | [ |
BiOCl0.75I0.25/g-C3N4 | Ⅱ | 氙灯500W,λ>420nm | 10 | 10 | 60min降解100% | [ |
In2O3/g-C3N4 | Ⅱ | 氙灯,λ>420nm | 50 | 50 | 180min降解91% | [ |
光催化剂 | 异质结类型 | 光源条件 | 催化剂使用量/mg | BPA浓度/mg·L-1 | 性能 | 参考文献 |
---|---|---|---|---|---|---|
g-C3N4/BiOI | Ⅱ | 氙灯300W,λ>400nm | 50 | 20 | 60min降解100% | [ |
C3N4/Bi4O5I2 | Ⅱ | 氙灯300W,λ>400nm | 50 | 10 | 60min降解100% | [ |
D35-TiO2/g-C3N4 | Ⅱ | 氙灯300W,λ>400nm | 50 | 10 | 15min降解100% | [ |
N-KTiNbO5/g-C3N4 | Ⅱ | 氙灯300W,λ>420nm | 100 | 2 | 120min降解100% | [ |
g-C3N4/BiOCl x I1-x | Ⅱ | 氙灯500W,λ>420nm | 30 | 10 | 40min降解100% | [ |
g-C3N4/BiOBr | Ⅱ | 氙灯300W,λ>420nm | 10 | 10 | 120min降解96.6% | [ |
BiOCl0.75I0.25/g-C3N4 | Ⅱ | 氙灯500W,λ>420nm | 10 | 10 | 60min降解100% | [ |
In2O3/g-C3N4 | Ⅱ | 氙灯,λ>420nm | 50 | 50 | 180min降解91% | [ |
光催化剂 | 异质结类型 | 光源条件 | 催化剂 使用量/mg | BPA浓度 /mg·L-1 | 性能 | 参考文献 |
---|---|---|---|---|---|---|
g-C3N4/Bi/γ-Bi2O3 | 全固态Z型 | 氙灯500W,λ>420nm | 20 | 15 | 240min降解70.1% | [ |
AgBr/Ag/g-C3N4@NGA | 全固态Z型 | 氙灯500W,λ>420nm | 70 | 10 | 120min降解92% | [ |
CQDs/g-C3N4/BiOBr | 全固态Z型 | LED30W,峰值波450nm,色温6297K | 30 | 15 | 60min降解92% | [ |
Fe2O3-ZnO@C/g-C3N4 | 全固态Z型 | 氙灯500W | 200 | 10 | 60min降解92% | [ |
Au/g-C3N4/Co3O4 | 直接Z型 | 氙灯500W,λ>420nm | 40 | 15 | 150min降解90.3% | [ |
CeO2/g-C3N4 | 直接Z型 | 氙灯500W,λ>400nm | 40 | 15 | 150min降解94.1% | [ |
BiOBr/g-C3N4 | 直接Z型 | 氙灯300W,λ>420nm | 100 | 5 | 100min降解100% | [ |
g-C3N4/Bi4O7 | 直接Z型 | 氙灯500W,λ>420nm | 80 | 20 | 100min降解100% | [ |
α-Fe2O3/g-C3N4 | 直接Z型 | 氙灯500W | 20 | 15 | 180min降解91.1% | [ |
Ag3PO4/g-C3N4 | 直接Z型 | 5 | 10 | 180min降解92.8% | [ | |
Bi12O15Cl6@W18O49@g-C3N4/PDI | 直接Z型 | 氙灯300W,λ>300nm | 18 | 10 | 30min降解100% | [ |
g-C3N4@CoFe2O4/Fe2O3 | 直接Z型 | 氙灯500W,λ>400nm | 10 | 30 | 80min降解98.1% | [ |
Ag3PO4/g-C3N4 | 直接Z型 | 氙灯300W,λ>420nm | 10 | 10 | 80min降解100% | [ |
Uio-66-NH2/g-C3N4 | 直接Z型 | 氙灯300W,λ>400nm | 10 | 20 | 60min降解100% | [ |
光催化剂 | 异质结类型 | 光源条件 | 催化剂 使用量/mg | BPA浓度 /mg·L-1 | 性能 | 参考文献 |
---|---|---|---|---|---|---|
g-C3N4/Bi/γ-Bi2O3 | 全固态Z型 | 氙灯500W,λ>420nm | 20 | 15 | 240min降解70.1% | [ |
AgBr/Ag/g-C3N4@NGA | 全固态Z型 | 氙灯500W,λ>420nm | 70 | 10 | 120min降解92% | [ |
CQDs/g-C3N4/BiOBr | 全固态Z型 | LED30W,峰值波450nm,色温6297K | 30 | 15 | 60min降解92% | [ |
Fe2O3-ZnO@C/g-C3N4 | 全固态Z型 | 氙灯500W | 200 | 10 | 60min降解92% | [ |
Au/g-C3N4/Co3O4 | 直接Z型 | 氙灯500W,λ>420nm | 40 | 15 | 150min降解90.3% | [ |
CeO2/g-C3N4 | 直接Z型 | 氙灯500W,λ>400nm | 40 | 15 | 150min降解94.1% | [ |
BiOBr/g-C3N4 | 直接Z型 | 氙灯300W,λ>420nm | 100 | 5 | 100min降解100% | [ |
g-C3N4/Bi4O7 | 直接Z型 | 氙灯500W,λ>420nm | 80 | 20 | 100min降解100% | [ |
α-Fe2O3/g-C3N4 | 直接Z型 | 氙灯500W | 20 | 15 | 180min降解91.1% | [ |
Ag3PO4/g-C3N4 | 直接Z型 | 5 | 10 | 180min降解92.8% | [ | |
Bi12O15Cl6@W18O49@g-C3N4/PDI | 直接Z型 | 氙灯300W,λ>300nm | 18 | 10 | 30min降解100% | [ |
g-C3N4@CoFe2O4/Fe2O3 | 直接Z型 | 氙灯500W,λ>400nm | 10 | 30 | 80min降解98.1% | [ |
Ag3PO4/g-C3N4 | 直接Z型 | 氙灯300W,λ>420nm | 10 | 10 | 80min降解100% | [ |
Uio-66-NH2/g-C3N4 | 直接Z型 | 氙灯300W,λ>400nm | 10 | 20 | 60min降解100% | [ |
1 | YAMAZAKI Eriko, YAMASHITA Nobuyoshi, TANIYASU Sachi, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122: 565-572. |
2 | HUANG Y Q, WONG C K C, ZHENG J S, et al. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts[J]. Environment International, 2012, 42: 91-99. |
3 | MA Ya, LIU Haohao, WU Jinxia, et al. The adverse health effects of bisphenol A and related toxicity mechanisms[J]. Environmental Research, 2019, 176: 108575. |
4 | P Venkata Laxma REDDY, KIM Ki-Hyun, KAVITHA Beluri, et al. Photocatalytic degradation of bisphenol A in aqueous media: A review[J]. Journal of Environmental Management, 2018, 213: 189-205. |
5 | ALMEIDA Susana, RAPOSO António, Maira ALMEIDA-GONZÁLEZ, et al. Bisphenol A: Food exposure and impact on human health[J]. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(6): 1503-1517. |
6 | BRAUN Joseph M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment[J]. Nature Reviews Endocrinology, 2017, 13(3): 161-173. |
7 | REZG Raja, Saloua EL-FAZAA, GHARBI Najoua, et al. Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives[J]. Environment International, 2014, 64: 83-90. |
8 | Jaromir MICHAŁOWICZ. Bisphenol A—Sources, toxicity and biotransformation[J]. Environmental Toxicology and Pharmacology, 2014, 37(2): 738-758. |
9 | Ali YAGHOOT-NEZHAD, Stanisław WACŁAWEK, Soheila MADIHI-BIDGOLI, et al. Heterogeneous photocatalytic activation of electrogenerated chlorine for the production of reactive oxygen and chlorine species: A new approach for bisphenol A degradation in saline wastewater[J]. Journal of Hazardous Materials, 2023, 445: 130626. |
10 | HASSANI Aydin, EGHBALI Paria, MAHDIPOUR Fayyaz, et al. Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective bisphenol A degradation: Performance, mineralization, and activation mechanism[J]. Chemical Engineering Journal, 2023, 453: 139556. |
11 | Evanthia DIAMANTI-KANDARAKIS, BOURGUIGNON Jean-Pierre, GIUDICE Linda C, et al. Endocrine-disrupting chemicals: An endocrine society scientific statement[J]. Endocrine Reviews, 2009, 30(4): 293-342. |
12 | CHEN Zhihao, LIU Zhuang, HU Jiaqi, et al. β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water[J]. Journal of Membrane Science, 2020, 595: 117510. |
13 | TAGHIZADEH Tohid, Amin TALEBIAN-KIAKALAIEH, JAHANDAR Hoda, et al. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y[J]. Journal of Hazardous Materials, 2020, 386: 121950. |
14 | ZHAO Danyang, TIAN Yuyang, JING Xiaofei, et al. PAF-1@cellulose nanofibril composite aerogel for highly-efficient removal of bisphenol A[J]. Journal of Materials Chemistry A, 2019, 7(1): 157-164. |
15 | JIANG Shunfeng, LING Lili, CHEN Wenjing, et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors[J]. Chemical Engineering Journal, 2019, 359: 572-583. |
16 | HACIOSMANOĞLU Gül Gülenay, Tuğçe DOĞRUEL, Seval GENÇ, et al. Adsorptive removal of bisphenol A from aqueous solutions using phosphonated levan[J]. Journal of Hazardous Materials, 2019, 374: 43-49. |
17 | BHATNAGAR Amit, ANASTOPOULOS Ioannis. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review[J]. Chemosphere, 2017, 168: 885-902. |
18 | LI Guiying, ZU Lei, WONG Po-Keung, et al. Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition[J]. Bioresource Technology, 2012, 114: 224-230. |
19 | YANG Yuyin, WANG Zhao, XIE Shuguang. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change[J]. Science of the Total Environment, 2014, 470/471: 1184-1188. |
20 | VILLEGAS Laura G Cordova, MASHHADI Neda, CHEN Miao, et al. A short review of techniques for phenol removal from wastewater[J]. Current Pollution Reports, 2016, 2(3): 157-167. |
21 | OHKO Y, ANDO I, NIWA C, et al. Degradation of bisphenol A in water by TiO2 photocatalyst[J]. Environmental Science & Technology, 2001, 35(11): 2365-2368. |
22 | Isil GÜLTEKIN, INCE Nilsun H. Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes[J]. Journal of Environmental Management, 2007, 85(4): 816-832. |
23 | YAN Suding, SHI Yue, TAO Yufang, et al. Enhanced persulfate-mediated photocatalytic oxidation of bisphenol A using bioelectricity and a g-C3N4/Fe2O3 heterojunction[J]. Chemical Engineering Journal, 2019, 359: 933-943. |
24 | JIANG Xunheng, WANG Laichun, YU Fan, et al. Photodegradation of organic pollutants coupled with simultaneous photocatalytic evolution of hydrogen using quantum-dot-modified g-C3N4 catalysts under visible-light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12695-12705. |
25 | ZHOU Jing, AN Xiaoqiang, TANG Qingwen, et al. Dual channel construction of WO3 photocatalysts by solution plasma for the persulfate-enhanced photodegradation of bisphenol A[J]. Applied Catalysis B: Environmental, 2020, 277: 119221. |
26 | KANIGARIDOU Ypatia, PETALA Athanasia, FRONTISTIS Zacharias, et al. Solar photocatalytic degradation of bisphenol A with CuO x /BiVO4: Insights into the unexpectedly favorable effect of bicarbonates[J]. Chemical Engineering Journal, 2017, 318: 39-49. |
27 | CAO Shaowen, Jingxiang LOW, YU Jiaguo, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. |
28 | MAO Liuhao, LU Bingru, SHI Jinwen, et al. Rapid high-temperature hydrothermal post treatment on graphitic carbon nitride for enhanced photocatalytic H2 evolution[J]. Catalysis Today, 2023, 409: 94-102. |
29 | GORDANSHEKAN Ariya, ARABIAN Shakiba, SOLAIMANY NAZAR Ali Reza, et al. A comprehensive comparison of green Bi2WO6/g-C3N4 and Bi2WO6/TiO2 S-scheme heterojunctions for photocatalytic adsorption/degradation of Cefixime: Artificial neural network, degradation pathway, and toxicity estimation[J]. Chemical Engineering Journal, 2023, 451: 139067. |
30 | LI Kaining, ZHOU Weichuang, LI Xiaofang, et al. Synergistic effect of cyano defects and CaCO3 in graphitic carbon nitride nanosheets for efficient visible-light-driven photocatalytic NO removal[J]. Journal of Hazardous Materials, 2023, 442: 130040. |
31 | ISMAEL Mohammed. Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: A review[J]. Journal of Alloys and Compounds, 2023, 931: 167469. |
32 | TANG Chensi, CHENG Min, LAI Cui, et al. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis[J]. Coordination Chemistry Reviews, 2023, 474: 214846. |
33 | YI Jianjian, Wiam EL-ALAMI, SONG Yanhua, et al. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting[J]. Chemical Engineering Journal, 2020, 382: 122812. |
34 | LIU Wen, LI Yunyi, LIU Fuyang, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation[J]. Water Research, 2019, 151: 8-19. |
35 | WANG Yan, WANG Sibo,LOU Xiong Wen David. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction[J]. Angewandte Chemie International Edition, 2019, 58(48): 17236-17240. |
36 | ZHU Xiaolin, LIN Yixiong, MARTIN Jovan San, et al. Lead halide perovskites for photocatalytic organic synthesis[J]. Nature Communications, 2019, 10(1): 2843. |
37 | MILLER Dale R, WANG Jianjun, GILLAN Edward G. Rapid, facile synthesis of nitrogen-rich carbon nitride powders[J]. Journal of Materials Chemistry, 2002, 12(8): 2463-2469. |
38 | WANG Shaomang, LI Dinglong, SUN Cheng, et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation[J]. Applied Catalysis B: Environmental, 2014, 144: 885-892. |
39 | CHANG Chun, FU Yu, HU Meng, et al. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation[J]. Applied Catalysis B: Environmental, 2013, 142/143: 553-560. |
40 | Wee-Jun ONG, TAN Lling-Lling, Yun Hau NG, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
41 | QIU Pengxiang, XU Chenmin, CHEN Huan, et al. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2017, 206: 319-327. |
42 | LI Jianghua, SHEN Biao, HONG Zhenhua, et al. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity[J]. Chemical Communications, 2012, 48(98): 12017-12019. |
43 | ZHANG Sai, LIU Yang, GU Pengcheng, et al. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies[J]. Applied Catalysis B: Environmental, 2019, 248: 1-10. |
44 | HE Xi, LEI Ling, WEN Jinglin, et al. One-pot synthesis of C-doping and defects co-modified g-C3N4 for enhanced visible-light photocatalytic degradation of bisphenol A[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106911. |
45 | WU Ming, HE Xin, JING Binghua, et al. Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light[J]. Journal of Hazardous Materials, 2020, 384: 121323. |
46 | LIN Kun-Yi Andrew, ZHANG Zhiyu. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. |
47 | LIU Lianlian, CHEN Fei, WU Jinghang, et al. Fine tuning of phosphorus active sites on g-C3N4 nanosheets for enhanced photocatalytic decontamination[J]. Journal of Materials Chemistry A, 2021, 9(17): 10933-10944. |
48 | JING Liquan, WANG Duidui, HE Minqiang, et al. An efficient broad spectrum-driven carbon and oxygen co-doped g-C3N4 for the photodegradation of endocrine disrupting: Mechanism, degradation pathway, DFT calculation and toluene selective oxidation[J]. Journal of Hazardous Materials, 2021, 401: 123309. |
49 | ZHU Yue, CHEN Zhenhuan, GAO Yaowen, et al. General synthesis of carbon and oxygen dual-doped graphitic carbon nitride via copolymerization for non-photochemical oxidation of organic pollutant[J]. Journal of Hazardous Materials, 2020, 394: 122578. |
50 | GU Jiayu, CHEN Huan, JIANG Fang, et al. Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride[J]. Journal of Colloid and Interface Science, 2019, 540: 97-106. |
51 | LIANG Xiaofei, WANG Guanlong, DONG Xiaoli, et al. Graphitic carbon nitride with carbon vacancies for photocatalytic degradation of bisphenol A[J]. ACS Applied Nano Materials, 2019, 2(1): 517-524. |
52 | XU Jihong, SONG Jianxin, MIN Yulin, et al. Mg-induced g-C3N4 synthesis of nitrogen-doped graphitic carbon for effective activation of peroxymonosulfate to degrade organic contaminants[J]. Chinese Chemical Letters, 2022, 33(6): 3113-3118. |
53 | XU Fan, MO Zhao, YAN Jia, et al. Nitrogen-rich graphitic carbon nitride nanotubes for photocatalytic hydrogen evolution with simultaneous contaminant degradation[J]. Journal of Colloid and Interface Science, 2020, 560: 555-564. |
54 | RENGARAJ S, LI X Z. Photocatalytic degradation of bisphenol A as an endocrine disruptor in aqueous suspension using Ag-TiO2 catalysts[J]. International Journal of Environment and Pollution, 2006, 27(1/2/3): 20. |
55 | WANG Yanbin, ZHAO Xu, CAO Di, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 2017, 211: 79-88. |
56 | WANG Qi, LIU Cun, ZHOU Dongmei, et al. Degradation of bisphenol a using peroxymonosulfate activated by single-atomic cobalt catalysts: Different reactive species at acidic and alkaline pH[J]. Chemical Engineering Journal, 2022, 439: 135002. |
57 | SI Qishi, GUO Wanqian, LIU Banghai, et al. Spin-states-assistance peroxymonosulfate absorption via Mn doped catalyst with/without light for BPA oxidation: The negative contribution of electrons transfer by light[J]. Chemical Engineering Journal, 2022, 443: 136399. |
58 | MA Jianqing, HUANG Ziheng, XI Hao, et al. Magnetic Fe-doping g-C3N4/graphite: The effect of supporters and the performance in Fenton-like reactions[J]. Desalination and Water Treatment, 2019, 142: 371-380. |
59 | XU Lijie, QI Lanyue, HAN Yu, et al. Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis[J]. Chemical Engineering Journal, 2022, 430: 132828. |
60 | BAI Xue, SHI Juan, XU Lu, et al. Fe-g-C3N4/reduced graphene oxide lightless application for efficient peroxymonosulfate activation and pollutant mineralization: Comprehensive exploration of reactive sites[J]. Science of the Total Environment, 2023, 855: 158799. |
61 | CHEN Hong Hak, LAN Ching Sim, Hon Leong KAH, et al. M/g-C3N4 (M=Ag, Au, and Pd) composite: Synthesis via sunlight photodeposition and application towards the degradation of bisphenol A[J]. Environmental Science and Pollution Research, 2018, 25(25): 25401-25412. |
62 | SONG Hui, GUAN Zeyu, XIA Dongsheng, et al. Copper-oxygen synergistic electronic reconstruction on g-C3N4 for efficient non-radical catalysis for peroxydisulfate and peroxymonosulfate[J]. Separation and Purification Technology, 2021, 257: 117957. |
63 | CHEN Ting, ZHU Zhiliang, ZHANG Hua, et al. Cu-O-incorporation design for promoted heterogeneous catalysis: Synergistic effect of surface adsorption and catalysis towards efficient bisphenol A removal[J]. Applied Surface Science, 2021, 569: 151107. |
64 | CHEN Fei, LIU Lianlian, CHEN Jiejie, et al. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system[J]. Water Research, 2021, 191: 116799. |
65 | XU Liangpang, LI Lejing, YU Luo, et al. Efficient generation of singlet oxygen on modified g-C3N4 photocatalyst for preferential oxidation of targeted organic pollutants[J]. Chemical Engineering Journal, 2022, 431: 134241. |
66 | CHEN Xiang, LIU Qing, WU Qiliang, et al. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement[J]. Advanced Functional Materials, 2016, 26(11): 1719-1728. |
67 | WANG Wanjun, YU Jimmy C, SHEN Zhurui, et al. g-C3N4 quantum dots: Direct synthesis, upconversion properties and photocatalytic application[J]. Chemical Communications, 2014, 50(70): 10148-10150. |
68 | TIAN Na, HUANG Hongwei, DU Xin, et al. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications[J]. Journal of Materials Chemistry A, 2019, 7(19): 11584-11612. |
69 | SHE Xiaojie, LIU Liang, JI Haiyan, et al. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light[J]. Applied Catalysis B: Environmental, 2016, 187: 144-153. |
70 | ZHANG Jinshui, CHEN Yan, WANG Xinchen. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications[J]. Energy & Environmental Science, 2015, 8(11): 3092-3108. |
71 | CHEN Changbin, LI Chenxuan, ZHANG Yingjie, et al. Cyano-rich mesoporous carbon nitride nanospheres for visible-light-driven photocatalytic degradation of pollutants[J]. Environmental Science: Nano, 2018, 5(12): 2966-2977. |
72 | YANG Shuang, LIU Chang, WANG Jingbo, et al. Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites[J]. Journal of Solid State Chemistry, 2020, 287: 121347. |
73 | DING Yuan, LIN Zhi, DENG Jiawei, et al. Construction of carbon dots modified hollow g-C3N4 spheres via in situ calcination of cyanamide and glucose for highly enhanced visible light photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(3): 1568-1578. |
74 | HUANG Ying, SU Minhua, ZHOU Ying, et al. LiCl-CN nanotubes ceramic films with highly efficient visible light — Driven photocatalytic active for bisphenol A degradation and efficient regeneration process[J]. Ceramics International, 2020, 46(17): 26492-26501. |
75 | LIU Bochuan, QIAO Meng, WANG Yanbin, et al. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation[J]. Chemosphere, 2017, 189: 115-122. |
76 | MENG Fanpeng, WANG Jun, TIAN Wenjie, et al. Graphitic carbon nitride nanosheets via acid pretreatments for promoted photocatalysis toward degradation of organic pollutants[J]. Journal of Colloid and Interface Science, 2022, 608: 1334-1347. |
77 | ZHANG Menglu, YANG Yu, AN Xiaoqiang, et al. Exfoliation method matters: The microstructure-dependent photoactivity of g-C3N4 nanosheets for water purification[J]. Journal of Hazardous Materials, 2022, 424: 127424. |
78 | SUN Jianhua, ZHANG Jinshui, ZHANG Mingwen, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3: 1139. |
79 | TONG Zhenwei, YANG Dong, LI Zhen, et al. Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis[J]. ACS Nano, 2017, 11(1): 1103-1112. |
80 | HUANG Jinhui, CHENG Wenjian, SHI Yahui, et al. Honeycomb-like carbon nitride through supramolecular preorganization of monomers for high photocatalytic performance under visible light irradiation[J]. Chemosphere, 2018, 211: 324-334. |
81 | WU Jun, XIE Yu, LING Yun, et al. Synthesis of flower-like g-C3N4/BiOBr and enhancement of the activity for the degradation of bisphenol A under visible light irradiation[J]. Frontiers in Chemistry, 2019, 7: 649. |
82 | LIU Chengyin, HUANG Hongwei, YE Liqun, et al. Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H2 evolution[J]. Nano Energy, 2017, 41: 738-748. |
83 | Jingxiang LOW, YU Jiaguo, JARONIEC Mietek, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. |
84 | FU Junwei, YU Jiaguo, JIANG Chuanjia, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 1701503. |
85 | BARD Allen J, Marye Anne FOX. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen[J]. Accounts of Chemical Research, 1995, 28(3): 141-145. |
86 | TADA Hiroaki, MITSUI Tomohiro, KIYONAGA Tomokazu, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Materials, 2006, 5(10): 782-786. |
87 | Michael GRÄTZEL. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344. |
88 | ZHANG Liuyang, ZHANG Jianjun, YU Huogen, et al. Emerging S-scheme photocatalyst[J]. Advanced Materials, 2022, 34(11): e2107668. |
89 | FU Junwei, XU Quanlong, Jingxiang LOW, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565. |
90 | MA Ran, ZHANG Sai, LI Lei, et al. Enhanced visible-light-induced photoactivity of type-Ⅱ CeO2/g-C3N4 nanosheet toward organic pollutants degradation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9699-9708. |
91 | XU Yue, YOU Yong, HUANG Hongwei, et al. Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction[J]. Journal of Hazardous Materials, 2020, 381: 121159. |
92 | DI Jun, XIA Jiexiang, YIN Sheng, et al. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants[J]. Journal of Materials Chemistry A, 2014, 2(15): 5340-5351. |
93 | XIA Jiexiang, JI Mengxia, DI Jun, et al. Construction of ultrathin C3N4/Bi4O5I2 layered nanojunctions via ionic liquid with enhanced photocatalytic performance and mechanism insight[J]. Applied Catalysis B: Environmental, 2016, 191: 235-245. |
94 | YANG Lei, BAI Xue, SHI Juan, et al. Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants[J]. Applied Catalysis B: Environmental, 2019, 256: 117759. |
95 | LIU Chao, ZHU Huajun, ZHU Yisong, et al. Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 228: 54-63. |
96 | HU Xiaonan, ZHANG Yao, WANG Boji, et al. Novel g-C3N4/BiOCl x I1- x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light[J]. Applied Catalysis B: Environmental, 2019, 256: 117789. |
97 | QIN Yuyang, YANG Biqi, LI Hongjing, et al. Immobilized BiOCl0.75I0.25/g-C3N4 nanocomposites for photocatalytic degradation of bisphenol A in the presence of effluent organic matter[J]. Science of the Total Environment, 2022, 842: 156828. |
98 | UDDIN Ahmed, RAUF Abdur, WU Tong, et al. In2O3/oxygen doped g-C3N4 towards photocatalytic BPA degradation: Balance of oxygen between metal oxides and doped g-C3N4 [J]. Journal of Colloid and Interface Science, 2021, 602: 261-273. |
99 | RUAN Xian, HU Yongyou. Effectively enhanced photodegradation of Bisphenol A by in situ g-C3N4-Zn/Bi2WO6 heterojunctions and mechanism study[J]. Chemosphere, 2020, 246: 125782. |
100 | LIU Ning, LU Na, YU Hongtao, et al. Enhanced degradation of organic water pollutants by photocatalytic in situ activation of sulfate based on Z-scheme g-C3N4/BiPO4 [J]. Chemical Engineering Journal, 2022, 428: 132116. |
101 | DU Fuyou, LAI Zhan, TANG Huiyang, et al. Construction of dual Z-scheme Bi2WO6/g-C3N4/black phosphorus quantum dots composites for effective bisphenol A degradation[J]. Journal of Environmental Sciences, 2023, 124: 617-629. |
102 | ZHANG Yan, WU Yixiao, WAN Liang, et al. Double Z-Scheme g-C3N4/BiOI/CdS heterojunction with I3 -/I- pairs for enhanced visible light photocatalytic performance[J]. Green Energy & Environment, 2022, 7(6): 1377-1389. |
103 | LU Shuaishuai, WU Tong, LIU Yanan, et al. All-solid Z-scheme Bi/γ-Bi2O3/O-doped g-C3N4 heterojunction with Bi as electron shuttle for visible-light photocatalysis[J]. Journal of Alloys and Compounds, 2022, 911: 164980. |
104 | CHEN Yuexing, WANG Peilu, LIANG Yong, et al. Fabrication of a three-dimensional porous Z-scheme silver/silver bromide/graphitic carbon nitride@nitrogen-doped graphene aerogel with enhanced visible-light photocatalytic and antibacterial activities[J]. Journal of Colloid and Interface Science, 2019, 536: 389-398. |
105 | HUANG Liying, LIU Jiawei, LI Pengpeng, et al. CQDs modulating Z-scheme g-C3N4/BiOBr heterostructure for photocatalytic removing RhB, BPA and TC and E. coli by LED light[J]. Journal of Alloys and Compounds, 2022, 895: 162637. |
106 | CHAI Hua, YANG Chunyan, XU Peng, et al. Enhanced visible-light photocatalytic activity with Fe2O3-ZnO@C/g-C3N4 heterojunction: Characterization, kinetics, and mechanisms[J]. Journal of Cleaner Production, 2022, 377: 134511. |
107 | ZHAO Wei, MA Sisi, YANG Gang, et al. Z-scheme Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for catalytic reduction of hexavalent chromium and oxidation of bisphenol A[J]. Journal of Hazardous Materials, 2021, 410: 124539. |
108 | ZHAO Wei, SHE Tiantian, ZHANG Jingyi, et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism[J]. Journal of Materials Science & Technology, 2021, 85: 18-29. |
109 | LIU Chao, WU Qisheng, JI Mingwei, et al. Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2017, 723: 1121-1131. |
110 | SUN Meng, WANG Yu, SHAO Yu, et al. Fabrication of a novel Z-scheme g-C3N4/Bi4O7 heterojunction photocatalyst with enhanced visible light-driven activity toward organic pollutants[J]. Journal of Colloid and Interface Science, 2017, 501: 123-132. |
111 | PAN Lifang, CAO Shihai, LIU Rui, et al. Graphitic carbon nitride grown in situ on aldehyde-functionalized α-Fe2O3: All-solid-state Z-scheme heterojunction for remarkable improvement of photo-oxidation activity[J]. Journal of Colloid and Interface Science, 2019, 548: 284-292. |
112 | MEI Jie, ZHANG Dapeng, LI Nan, et al. The synthesis of Ag3PO4/g-C3N4 nanocomposites and the application in the photocatalytic degradation of bisphenol A under visible light irradiation[J]. Journal of Alloys and Compounds, 2018, 749: 715-723. |
113 | ZHANG Zhuzhu, LIU Jiadi, GU Peiyang, et al. Preparation of a Bi12O15Cl6@W18O49@g-C3N4/PDI heterojunction with dual charge transfer paths and its photocatalytic performance for phenolic pollutants[J]. Separation and Purification Technology, 2022, 287: 120539. |
114 | Shiwen LYU, LIU Jingmin, ZHAO Ning, et al. MOF-derived CoFe2O4/Fe2O3 embedded in g-C3N4 as high-efficient Z-scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate[J]. Separation and Purification Technology, 2020, 253: 117413. |
115 | DU Jinge, XU Zhe, LI Hui, et al. Ag3PO4/g-C3N4 Z-scheme composites with enhanced visible-light-driven disinfection and organic pollutants degradation: Uncovering the mechanism[J]. Applied Surface Science, 2021, 541: 148487. |
116 | HUANG Zhikun, YU Haojie, WANG Li, et al. Keywords: Bisphenol A[J]. Journal of Hazardous Materials, 2022, 436: 129052. |
117 | MU Feihu, DAI Benlin, WU Yahui, et al. 2D/3D S-scheme heterojunction of carbon nitride/iodine-deficient bismuth oxyiodide for photocatalytic hydrogen production and bisphenol A degradation[J]. Journal of Colloid and Interface Science, 2022, 612: 722-736. |
118 | XU Yin, TANG Xin, XIAO Yan, et al. Persulfate promoted visible photocatalytic elimination of bisphenol A by g-C3N4-CeO2 S-scheme heterojunction: The dominant role of photo-induced holes[J]. Chemosphere, 2023, 331: 138765. |
119 | Jingxiang LOW, CAO Shaowen, YU Jiaguo, et al. Two-dimensional layered composite photocatalysts[J]. Chemical Communications, 2014, 50(74): 10768-10777. |
120 | Shiwen LYU, LIU Jingmin, LI Chunyang, et al. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A[J]. Chemosphere, 2020, 243: 125378. |
121 | HUANG Kelei, LI Chunhu, ZHANG Xiuli, et al. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution[J]. Green Energy & Environment, 2023, 8(1): 233-245. |
122 | KUMAR Ashish, SCHUERINGS Christian, KUMAR Suneel, et al. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation[J]. Beilstein Journal of Nanotechnology, 2018, 9: 671-685. |
123 | LIU Guigao, ZHAO Guixia, ZHOU Wei, et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J]. Advanced Functional Materials, 2016, 26(37): 6822-6829. |
124 | XU Chengqun, LIU Xiaolu, LIU Haiyang, et al. Molecular engineering for constructing a D-A system and enhancing delocalization in g-C3N4 with superior photocatalytic activity[J]. Journal of Materials Chemistry A, 2022, 10(39): 21031-21043. |
125 | GE Feiyue, HUANG Shuquan, YAN Jia, et al. Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity[J]. Chinese Journal of Catalysis, 2021, 42(3): 450-459. |
126 | FEI Heng, SHAO Junxia, LI Hua, et al. Construction of ultra-thin 2D CN-Br0.12/2%RhO x photo-catalyst with rapid electron and hole separation for efficient bisphenol A degradation[J]. Applied Catalysis B: Environmental, 2021, 299: 120623. |
127 | SAHU Rama Shanker, SHIH Yang-hsin, CHEN Wenling. New insights of metal free 2D graphitic carbon nitride for photocatalytic degradation of bisphenol A[J]. Journal of Hazardous Materials, 2021, 402: 123509. |
128 | Wen-Da OH, Li-Wen LOK, VEKSHA Andrei, et al. Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: Performance and mechanistic studies[J]. Chemical Engineering Journal, 2018, 333: 739-749. |
129 | WANG Fei, LIU Shanshan, FENG Ziyue, et al. High-efficient peroxymonosulfate activation for rapid atrazine degradation by FeS x @MoS2 derived from MIL-88A(Fe)[J]. Journal of Hazardous Materials, 2022, 440: 129723. |
130 | YI Xiaohong, JI Haodong, WANG Chongchen, et al. Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations[J]. Applied Catalysis B: Environmental, 2021, 293: 120229. |
[1] | LIN Meijie, MI Shuodong, BAO Cheng. Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 209-224. |
[2] | LI Shuaizhe, NIE Yichen, PHIDJAVARD Keomeesay, GU Wen, ZHANG Wei, LIU Na, XU Gaoxiang, LIU Ying, LI Xingyong, CHEN Yubao. Research progress on non-precious metal-catalyzed hydrogenation and deoxygenation of biomass to produce hydrocarbon-based biofuels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 225-242. |
[3] | XIE Yulin, RAU Jui-yeh, HUANG Jian, HAO Jiayi, WANG Youyi, HUANG Qi. Preparation of continuous ZIF-8 membrane and its progress in hydrogen separation [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 403-418. |
[4] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
[5] | SHI Lei, WANG Qian, ZHAO Xiaosheng, LIU Hongchen, CHE Yuanjun, DUAN Yu, LI Qing. Synthesis and methyl blue adsorption performance of oil shale ash-based zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 650-661. |
[6] | FU Wei, NING Shuying, CAI Chen, CHEN Jiayin, ZHOU Hao, SU Yaxin. SCR-C3H6 denitrification performance of Cu-modified MIL-100(Fe) catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4951-4960. |
[7] | LI Zhenwu, PU Di, XIONG Yachun, WU Dingying, JIN Cheng, GUO Yongjun. Research progress of nanomaterials for oil displacement in enhancing oil recovery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5035-5048. |
[8] | OU Hongxiang, MIN Zheng, XUE Honglai, CAO Haizhen, BI Haipu, WANG Junqi. Effect of hydrophobic modified magnesium oxide nanoparticles on the properties of short fluorocarbon chain foam [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5177-5184. |
[9] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
[10] | ZHANG Zheng, LIU Lin, LI Zichen, WANG Mengqi, HUANG Chunyan, GE Yuanyuan. Preparation of copper-loaded geopolymer microspheres and their catalytic degradation of bisphenol S [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5290-5301. |
[11] | SUN Yan, XIE Xiaoyang, FENG Qianying, ZHENG Lu, HE Jiaojie, YANG Liwei, BAI Bo. Preparation of forward osmosis membrane modified by tannic acid-iron (Ⅲ) and its antifouling performance [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5309-5319. |
[12] | LIANG Guowei, JIN Jing, DONG Bo, HOU Fengxiao. Effect of in-situ modification of coal ash on carbon deposition of Ca-based oxygen carrier in chemical looping combustion [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4253-4261. |
[13] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[14] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
[15] | LONG Tao, ZHOU Feng, ZHANG Wei, WU Hong, WANG Jian, CHEN Lin. Synthesis and modification of deuterated methanol catalyst used in CO-CO2 system [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4411-4420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |