Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5601-5611.DOI: 10.16085/j.issn.1000-6613.2023-1690
• Materials science and technology • Previous Articles
WANG Huiqi1(), ZHANG Hui1,2,3,4(), LI Yapeng1,2,3,4(), FENG Wei1, WU Zeyuan1, LI Shilin1, YANG Xuan1, ZHANG Jianhua1
Received:
2023-09-25
Revised:
2023-12-15
Online:
2024-10-29
Published:
2024-10-15
Contact:
ZHANG Hui, LI Yapeng
王荟琪1(), 张会1,2,3,4(), 李亚鹏1,2,3,4(), 冯伟1, 武泽园1, 李仕琳1, 杨旋1, 张建华1
通讯作者:
张会,李亚鹏
作者简介:
王荟琪(1998—),女,硕士研究生,研究方向为功能材料的开发与应用。E-mail:whq1998113@163.com。
基金资助:
CLC Number:
WANG Huiqi, ZHANG Hui, LI Yapeng, FENG Wei, WU Zeyuan, LI Shilin, YANG Xuan, ZHANG Jianhua. Research progress of structure design and application of flexible triboelectric pressure sensor[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5601-5611.
王荟琪, 张会, 李亚鹏, 冯伟, 武泽园, 李仕琳, 杨旋, 张建华. 柔性摩擦电压力传感器结构设计及应用的研究进展[J]. 化工进展, 2024, 43(10): 5601-5611.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1690
电极材料 | 检测区间/kPa | 最大灵敏度 | 拉伸性/% | 可重复性/周期 | 参考文献 |
---|---|---|---|---|---|
Ag NWs | 6.65~19.21 | 0.3086V/kPa | 144.6 | 1200 | [ |
Au NWs | 40~100 | 0.0065V/kPa | 115 | 5000 | [ |
PEDOT-PSS | 2~60 | 0.08/kPa | 100 | — | [ |
STCH | 0~16.67 | — | 850 | 3000 | [ |
CNTs | 0~650 | 0.0479/kPa | — | 2000 | [ |
Gr | 1.3~101.7 | 0.274V/kPa | — | 2000 | [ |
MXene/SEBS | 4~100 | 6.03/kPa | 34 | 10000 | [ |
rGO/Ag NWs | 0~5 | 78.4/kPa | 200 | 10000 | [ |
电极材料 | 检测区间/kPa | 最大灵敏度 | 拉伸性/% | 可重复性/周期 | 参考文献 |
---|---|---|---|---|---|
Ag NWs | 6.65~19.21 | 0.3086V/kPa | 144.6 | 1200 | [ |
Au NWs | 40~100 | 0.0065V/kPa | 115 | 5000 | [ |
PEDOT-PSS | 2~60 | 0.08/kPa | 100 | — | [ |
STCH | 0~16.67 | — | 850 | 3000 | [ |
CNTs | 0~650 | 0.0479/kPa | — | 2000 | [ |
Gr | 1.3~101.7 | 0.274V/kPa | — | 2000 | [ |
MXene/SEBS | 4~100 | 6.03/kPa | 34 | 10000 | [ |
rGO/Ag NWs | 0~5 | 78.4/kPa | 200 | 10000 | [ |
1 | WANG Kang, ZHANG Yangyang, LI Hankun, et al. Friction for flexible pressure sensors and arrays on polymers[J]. Journal of Science: Advanced Materials and Devices, 2022, 7(4): 100512. |
2 | BIJENDER, KUMAR Ashok. Recent progress in the fabrication and applications of flexible capacitive and resistive pressure sensors[J]. Sensors and Actuators A: Physical, 2022, 344: 113770. |
3 | EKIZ Deniz, Yekta Said CAN, DARDAĞAN Yağmur Ceren, et al. End-to-end deep multi-modal physiological authentication with smartbands[J]. IEEE Sensors Journal, 2021, 21(13): 14977-14986. |
4 | NGUYEN Nhan Duc, TRUONG Phuc Huu, JEONG Gu-Min. Daily wrist activity classification using a smart band[J]. Physiological Measurement, 2017, 38(9): L10-L16. |
5 | HE Ke, LIU Zhiyuan, WAN Changjin, et al. An on-skin electrode with anti-epidermal-surface-lipid function based on a zwitterionic polymer brush[J]. Advanced Materials, 2020, 32(24): e2001130. |
6 | LIN Qiupeng, HUANG Jun, YANG Junlong, et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring[J]. Advanced Healthcare Materials, 2020, 9(17): e2001023. |
7 | WANG Chunfeng, DONG Lin, PENG Dengfeng, et al. Tactile sensors for advanced intelligent systems[J]. Advanced Intelligent Systems, 2019, 1(8): 1900090. |
8 | PARK Jonghwa, LEE Youngoh, HONG Jaehyung, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8(5): 4689-4697. |
9 | CHEN Shuai, JIANG Kai, LOU Zheng, et al. Recent developments in graphene-based tactile sensors and E-skins[J]. Advanced Materials Technologies, 2018, 3(2): 1700248. |
10 | PANG Changhyun, LEE Gil-Yong, KIM Tae-il, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Nature Materials, 2012, 11(9): 795-801. |
11 | FAN Fengru, LIN Long, ZHU Guang, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Letters, 2012, 12(6): 3109-3114. |
12 | SHI Qiongfeng, HE Tianyiyi, LEE Chengkuo. More than energy harvesting - Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/ nano-systems[J]. Nano Energy, 2019, 57: 851-871. |
13 | WANG Sihong, LIN Long, WANG Zhong lin. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics[J]. Nano Letters, 2012, 12(12): 6339-6346. |
14 | LI Xunjia, JIANG Chengmei, ZHAO Fengnian, et al. Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing[J]. Nano Energy, 2019, 61: 78-85. |
15 | LV Pinlei, SHI Lei, FAN Chengyu, et al. Hydrophobic ionic liquid gel-based triboelectric nanogenerator: Next generation of ultrastable, flexible, and transparent power sources for sustainable electronics[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15012-15022. |
16 | YE Chao, XU Quanfu, REN Jing, et al. Violin string inspired core-sheath silk/steel yarns for wearable triboelectric nanogenerator applications[J]. Advanced Fiber Materials, 2020, 2(1): 24-33. |
17 | GUO Hang, WAN Ji, WU Hanxiang, et al. Self-powered multifunctional electronic skin for a smart anti-counterfeiting signature system[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22357-22364. |
18 | LU Zhuo, ZHU Yongsheng, JIA Changjun, et al. A self-powered portable flexible sensor of monitoring speed skating techniques[J]. Biosensors, 2021, 11(4): 108. |
19 | Sumin LIM, Donghee SON, KIM Jaemin, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures[J]. Advanced Functional Materials, 2015, 25(3): 375-383. |
20 | CHOI Seunghoon, YOON Kukro, LEE Sanggeun, et al. Spray coating technologies: Conductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor, VR applications[J]. Advanced Functional Materials, 2019, 29(50): 1970344. |
21 | 李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021, 70(10): 7-24. |
LI Fengchao, KONG Zhen, WU Jinhua, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021, 70(10): 7-24. | |
22 | 汤桂君, 殷柯柯, 原会雨. 纳米材料在柔性压阻式压力传感器中的研究进展[J]. 复合材料学报, 2023, 40(7): 3722-3737. |
TANG Guijun, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3722-3737. | |
23 | ZHENG Qiang, SHI Bojing, LI Zhou, et al. Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems[J]. Advanced Science, 2017, 4(7): 1700029. |
24 | FAN Fengru, TIAN Zhongqun, WANG Zhonglin. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. |
25 | LEI Hao, CHEN Yunfeng, GAO Zhenqiu, et al. Advances in self-powered triboelectric pressure sensors[J]. Journal of Materials Chemistry A, 2021, 9(36): 20100-20130. |
26 | GUO Linan, WU Guitao, WANG Qunyi, et al. Advances in triboelectric pressure sensors[J]. Sensors and Actuators A: Physical, 2023, 355: 114331. |
27 | SONG Weixing, GAN Baoheng, JIANG Tao, et al. Nanopillar arrayed triboelectric nanogenerator as a self-powered sensitive sensor for a sleep monitoring system[J]. ACS Nano, 2016, 10(8): 8097-8103. |
28 | WANG Zhong lin, LIN Long, CHEN Jun, et al. Theoretical modeling of triboelectric nanogenerators[M]//Triboelectric Nanogenerators. Cham: Springer International Publishing, 2016: 155-183. |
29 | LIU Yiming, ZHAO Ling, AVILA Raduel, et al. Epidermal electronics for respiration monitoring via thermo-sensitive measuring[J]. Materials Today Physics, 2020, 13: 100199. |
30 | KIM Daewon, JEON Seung-Bae, KIM Ju Young, et al. High-performance nanopattern triboelectric generator by block copolymer lithography[J]. Nano Energy, 2015, 12: 331-338. |
31 | SHI Yapeng, WEI Xuelian, WANG Kaimeng, et al. Integrated all-fiber electronic skin toward self-powered sensing sports systems[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50329-50337. |
32 | AN Tiance, ANAYA David Vera, GONG Shu, et al. Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface[J]. Nano Energy, 2020, 77: 105295. |
33 | WEN Zhen, YANG Yanqin, SUN Na, et al. A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors[J]. Advanced Functional Materials, 2018, 28(37): 1803684. |
34 | LIU Yiming, WONG Tsz Hung, HUANG Xingcan, et al. Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing[J]. Nano Energy, 2022, 99: 107442. |
35 | CHENG Kuan, WALLAERT Samuel, ARDEBILI Haleh, et al. Advanced triboelectric nanogenerators based on low-dimension carbon materials: A review[J]. Carbon, 2022, 194: 81-103. |
36 | LIU Mengyang, HANG Chengzhou, ZHAO Xuefeng, et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial[J]. Nano Energy, 2021, 87: 106181. |
37 | CAO Ran, PU Xianjie, DU Xinyu, et al. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human-machine interaction[J]. ACS Nano, 2018, 12(6): 5190-5196. |
38 | LEE Yongjun, KIM Jejung, JANG Bongkyun, et al. Graphene-based stretchable/wearable self-powered touch sensor[J]. Nano Energy, 2019, 62: 259-267. |
39 | DONG Yongchang, MALLINENI Sai Sunil Kumar, MALESKI Kathleen, et al. Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators[J]. Nano Energy, 2018, 44: 103-110. |
40 | FAN Jiacheng, YUAN Mengmeng, WANG Libo, et al. MXene supported by cotton fabric as electrode layer of triboelectric nanogenerators for flexible sensors[J]. Nano Energy, 2023, 105: 107973. |
41 | LUO Xiongxin, ZHU Laipan, WANG Yichi, et al. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel[J]. Advanced Functional Materials, 2021, 31(38): 2104928. |
42 | ZHOU Kangkang, ZHAO Yi, SUN Xiupeng, et al. Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing[J]. Nano Energy, 2020, 70: 104546. |
43 | YANG Li, LIU Chaosai, YUAN Wenjing, et al. Fully stretchable, porous mxene-graphene foam nanocomposites for energy harvesting and self-powered sensing[J]. Nano Energy, 2022, 103: 107807. |
44 | ZHU Guang, YANG Wei qing, ZHANG Tiejun, et al. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification[J]. Nano Letters, 2014, 14(6): 3208-3213. |
45 | LI Tong, PAN Peng, YANG Zhengchun, et al. Research on PDMS TENG of laser etch 3D structure[J]. Journal of Materials Science, 2022, 57(12): 6723-6733. |
46 | ZHOU Qitao, PARK Jun Gyu, KIM Kyeong Nam, et al. Transparent-flexible-multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications[J]. Nano Energy, 2018, 48: 471-480. |
47 | FENG Hanfang, LI Huayang, XU Jin, et al. Triboelectric nanogenerator based on direct image lithography and surface fluorination for biomechanical energy harvesting and self-powered sterilization[J]. Nano Energy, 2022, 98: 107279. |
48 | TCHO Il-Woong, KIM Weon-Guk, JEON Seung-Bae, et al. Surface structural analysis of a friction layer for a triboelectric nanogenerator[J]. Nano Energy, 2017, 42: 34-42. |
49 | CHUNG Chen-Kuei, KE Kai-Hong. High contact surface area enhanced Al/PDMS triboelectric nanogenerator using novel overlapped microneedle arrays and its application to lighting and self-powered devices[J]. Applied Surface Science, 2020, 508: 145310. |
50 | KE Kaihong, CHUNG Chen-Kuei. High-performance Al/PDMS TENG with novel complex morphology of two-height microneedles array for high-sensitivity force-sensor and self-powered application[J]. Small, 2020, 16(35): 2001209. |
51 | MAHARJAN Pukar, BHATTA Trilochan, SALAUDDIN Md, et al. A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation[J]. Nano Energy, 2020, 76: 105071. |
52 | ZHANG Honghao, ZHANG Ping, DENG Lu, et al. Three-dimensional polypyrrole nanoarrays for wearable triboelectric nanogenerators[J]. ACS Applied Nano Materials, 2022, 5(8): 11219-11228. |
53 | LIU Liqiang, YANG Xiya, ZHAO Leilei, et al. Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics[J]. Nano Energy, 2020, 73: 104797. |
54 | WU Mengge, GAO Zhan, YAO Kuanming, et al. Thin, soft, skin-integrated foam-based triboelectric nanogenerators for tactile sensing and energy harvesting[J]. Materials Today Energy, 2021, 20: 100657. |
55 | VALLEM Veenasri, ROOSA Erin, LEDINH Tyler, et al. A soft variable-area electrical-double-layer energy harvester[J]. Advanced Materials, 2021, 33(43): 2103142. |
56 | WANG Xingling, SHI Yuxiang, YANG Peng, et al. Fish-wearable data snooping platform for underwater energy harvesting and fish behavior monitoring[J]. Small, 2022, 18(10): e2107232. |
57 | OUYANG Yue, WANG Xuechuan, LIU Xinhua, et al. Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure[J]. Advanced Science, 2021, 8(15): 2004377. |
58 | YEH Cheng, Fucheng KAO, WEI Pohan, et al. Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring[J]. Nano Energy, 2022, 104: 107852. |
59 | ZHU Miaomiao, WANG Yabing, LOU Mengna, et al. Bioinspired transparent and antibacterial electronic skin for sensitive tactile sensing[J]. Nano Energy, 2021, 81: 105669. |
60 | JI Bing, ZHOU Qian, HU Bin, et al. Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range[J]. Advanced Materials, 2021, 33(27): 2100859. |
61 | MENG Keyu, ZHAO Shenlong, ZHOU Yihao. A wireless textile-based sensor system for self-powered personalized health care[J]. Matter, 2020, 2(4): 896-907. |
62 | BABU Anand, MALIK Pinki, Nityananda DAS, et al. Surface potential tuned single active material comprised triboelectric nanogenerator for a high performance voice recognition sensor[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022, 18(22): e2201331. |
63 | LI Hui, SUN Yannan, SU Yujun, et al. Multi-scale metal mesh based triboelectric nanogenerator for mechanical energy harvesting and respiratory monitoring[J]. Nano Energy, 2021, 89: 106423. |
64 | NIU Qianqian, HUANG Li, Shasha LYU, et al. Pulse-driven bio-triboelectric nanogenerator based on silk nanoribbons[J]. Nano Energy, 2020, 74: 104837. |
65 | LOU Mengna, ABDALLA Ibrahim, ZHU Miaomiao, et al. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1597-1605. |
66 | HUO Xiaomin. A self-powered triboelectric pressure sensor for basketball training monitoring[J]. Materials Letters, 2022, 320: 132339. |
67 | SUN Ping, CAI Nixin, ZHONG Xiaodi, et al. Facile monitoring for human motion on fireground by using MiEs-TENG sensor[J]. Nano Energy, 2021, 89: 106492. |
68 | LU Xiao, ZHENG Li, ZHANG Haodong, et al. Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring[J]. Nano Energy, 2020, 78: 105359. |
69 | YANG Jin, AN Jie, SUN Yanshuo, et al. Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety[J]. Nano Energy, 2022, 97: 107199. |
70 | QU Xuecheng, LIU Zhuo, TAN Puchuan, et al. Artificial tactile perception smart finger for material identification based on triboelectric sensing[J]. Science Advances, 2022, 8(31): eabq2521. |
[1] | TANG Chunxia, LI Meng, WANG Yuxi, ZONG Yongzhong, FU Shaohai. Progress in structural design of functionalized cellulose nanomaterials for Cr(Ⅵ) removal [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 585-594. |
[2] | XU Na, WANG Guodong, TAO Yanan. Flexible wearable piezoresistive pressure sensors [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5259-5271. |
[3] | BIAN Yu, ZHANG Baichao, ZHENG Hong. Design, syntheses and applications of covalent organic frameworks with hierarchical porosities [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4866-4883. |
[4] | GE Mingliang, HE Ziyu. Review and perspective of gas sensing application based on polydiacetylene [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4268-4276. |
[5] | Yongtao NI, Qinxin ZHAO, Yong GUI, Yungang WANG, Huaishuang SHAO. Structural design and numerical analysis of two-stagelow-pressure ejector [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 69-76. |
[6] | Xiaozhi XU, Biao LI, Kaiqiang SHI, Siyuan DONG, Zuchao JIN, Jingbin HAN. Recent advances in LDHs-based gas barrier materials [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2177-2186. |
[7] | Famei QIN, Xueqing QIU, Chuan SUN, Zixian DING, Zhiqiang FANG. Research progress in nanocellulose for the removal of heavy metal ions in water [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3390-3401. |
[8] | YU Bin, ZHAO Xiaoming, SUN Tian. Design and properties of nanofiber filter based on fiber orientation [J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3966-3973. |
[9] | SHANG Yang, WANG Yueshe. Structural design and numerical analysis of single nozzle low pressure ejector [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 107-114. |
[10] | WANG Ying, WANG Xiaodong, XU Yawei, ZHOU Lixing, WEI Ying, YI Guiyun. Preparation of interconnected ordered macroporous SnO2 gas-sensing material with enhanced gas-sensing properties [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3570-3575. |
[11] | LOU Xiangdong,LIU Shuping,SHI Dongyang,XI Guoxi. Research progress on H2S–sensing materials [J]. Chemical Industry and Engineering Progree, 2006, 25(1): 43-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |