1 |
YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31.
|
2 |
KUBOTA M, MATSUMOTO S, MATSUDA H, et al. Chemical heat storage with LiOH/LiOH·H2O reaction for low-temperature heat below 373K[J]. Advanced Materials Research, 2014, 953/954: 757-760.
|
3 |
LI T X, WANG R Z, YAN T. Solid–gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer[J]. Energy, 2015, 84: 745-758.
|
4 |
ZAMENGO Massimiliano, Junichi RYU, KATO Yukitaka. Thermochemical performance of magnesium hydroxide–expanded graphite pellets for chemical heat pump[J]. Applied Thermal Engineering, 2014, 64(1/2): 339-347.
|
5 |
FELDERHOFF M, BOGDANOVIĆ B. High temperature metal hydrides as heat storage materials for solar and related applications[J]. International Journal of Molecular Sciences, 2009, 10(1): 325-344.
|
6 |
吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245.
|
|
WU Juan, LONG Xinfeng. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3238-3245.
|
7 |
JOHNSON Douglas J, NIEDBALSKI Nicholas P, ERVIN Jamie S, et al. Ammonium carbamate-based heat exchanger reactor as an endothermic heat sink for thermal management[J]. International Journal of Heat and Mass Transfer, 2015, 91: 766-776.
|
8 |
JOHNSON Douglas J, NIEDBALSKI Nicholas P, ERVIN Jamie S, et al. A thermal management system using ammonium carbamate as an endothermic heat sink[J]. Applied Thermal Engineering, 2017, 121: 897-907.
|
9 |
KOUTINAS A A, YIANOULIS P, LYCOURGHIOTIS A. Industrial scale modelling of the thermochemical energy storage system based on CO2+ 2NH3↔ NH2COONH4 equilibrium[J]. Energy Conversion and Management, 1983, 23(1): 55-63.
|
10 |
NIEDBALSKI N, JOHNSON D, PATNAIK S S, et al. Study of a multi-phase hybrid heat exchanger-reactor (HEX reactor): Part I–Experimental characterization[J]. International Journal of Heat and Mass Transfer, 2014, 70: 1078-1085.
|
11 |
程晓琳, 殷勇高, 戴苏洲, 等. 基于氨基甲酸铵的吸附式化学热泵循环性能分析[J]. 制冷技术, 2020, 40(3): 1-7.
|
|
CHENG Xiaolin, YIN Yonggao, DAI Suzhou, et al. Performance analysis of absorption chemical heat pump based on ammonium carbamate[J]. Chinese journal of refrigeration, 2020, 40(3): 1-7.
|
12 |
周杰, 殷勇高. 基于物化热效应的制冷新循环热力分析[J]. 化工学报, 2018, 69(S2): 408-412.
|
|
ZHOU Jie, YIN Yonggao. Thermodynamic analysis of novel refrigeration cycle based on physicochemical thermal effect[J]. CIESC Journal, 2018, 69(S2): 408-412.
|
13 |
李伟格. 一种基于氨基甲酸铵可逆反应的新型余热回收热泵系统研究[D]. 南京:东南大学, 2021.
|
|
LI Weige. Study on the novel chemical heat pump based on ammonium carbamate reaction for waste heat recovery[D]. Nanjing: Southeast university, 2021.
|
14 |
DAI Suzhou, YIN Yonggao, LI Weige, et al. Thermodynamic analysis of a novel chemical heat pump cycle based on the physical-chemical thermal effects of reversible reaction[J]. Energy Conversion and Management, 2020, 225: 113419.
|
15 |
WANG Chengcheng, YANG Hui, NIE Binjian, et al. Discharging behavior of a shell-and-tube based thermochemical reactor for thermal energy storage: Modeling and experimental validation[J]. International Journal of Heat and Mass Transfer, 2022, 183 :122160.
|
16 |
COSQUILLO MEJÍA Aldo, AFFLERBACH Sandra, LINDER Marc, et al. Experimental analysis of encapsulated CaO/Ca(OH)2 granules as thermochemical storage in a novel moving bed reactor[J]. Applied Thermal Engineering, 2020, 169:114961.
|
17 |
KOWSARIA Mohammadzadeh Milad, NIAZMANDA Hamid, TOKAREV Mikhail Mikhailovich. Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation[J]. Applied Energy, 2018, 213: 540-554.
|
18 |
PATTANAIK M S, CHEEKATI S K, VARMA V B, et al. A novel magnetic cooling device for long distance heat transfer[J]. Applied Thermal Engineering, 2022, 201: 117777.
|
19 |
NASRALLAH S BEN, JEMNI A. Heat and mass transfer models in metal-hydrogen reactor[J]. International Journal of Hydrogen Energy, 1997, 22(1): 67-76.
|
20 |
范鲁艳, 汪安东, 曲大为, 等. 重型柴油机固态铵选择性催化还原系统铵盐热解及动力学特征研究[J]. 西安交通大学学报, 2017, 51(9): 44-53.
|
|
FAN Luyan, WANG Andong, QU Dawei, et al. Pyrolysis and kinetic characteristics of ammonium salt in solid-state ammonium SCR for heavy duty diesel engine[J]. Journal of Xi’an Jiaotong University, 2017, 51(9): 44-53.
|
21 |
STIEGER D, WEISWEILER W. Ammoniak-generator für die NO x -minderung in diesel-abgasen: Modellierung der ammoniumcarbamat-thermolyse[J]. Chemie Ingenieur Technik, 2001, 73(1/2): 123-127.
|