Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4247-4263.DOI: 10.16085/j.issn.1000-6613.2022-1785
• Industrial catalysis • Previous Articles Next Articles
HUANG Yufei(), LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao(), LIANG Zhiwu()
Received:
2022-09-23
Revised:
2023-01-20
Online:
2023-09-19
Published:
2023-08-15
Contact:
LUO Xiao, LIANG Zhiwu
黄玉飞(), 李子怡, 黄杨强, 金波, 罗潇(), 梁志武()
通讯作者:
罗潇,梁志武
作者简介:
黄玉飞(1993—),男,博士研究生,研究方向为CO2的捕获与利用。E-mail: yufeih@hnu.edu.cn。
基金资助:
CLC Number:
HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263.
黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1785
1 | NGUYEN Tu N, DINH Cao-Thang. Gas diffusion electrode design for electrochemical carbon dioxide reduction[J]. Chemical Society Reviews, 2020, 49(21): 7488-7504. |
2 | Kristie L EBI, VANOS Jennifer, BALDWIN Jane W, et al. Extreme weather and climate change: Population health and health system implications[J]. Annual Review of Public Health, 2021, 42: 293-315. |
3 | ALTHOR Glenn, WATSON James E M, FULLER Richard A. Global mismatch between greenhouse gas emissions and the burden of climate change[J]. Scientific Reports, 2016, 6: 20281. |
4 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
5 | BECATTINI Viola, GABRIELLI Paolo, MAZZOTTI Marco. Role of carbon capture, storage, and utilization to enable a net-zero-CO2-emissions aviation sector[J]. Industrial & Engineering Chemistry Research, 2021, 60(18): 6848-6862. |
6 | WILBERFORCE Tabbi, OLABI A G, SAYED Enas Taha, et al. Progress in carbon capture technologies[J]. Science of the Total Environment, 2021, 761: 143203. |
7 | BOOT-HANDFORD Matthew E, ABANADES Juan C, ANTHONY Edward J, et al. Carbon capture and storage update[J]. Energy & Environmental Science, 2014, 7(1): 130-189. |
8 | WUEBBLES Donald J, HAYHOE Katharine. Atmospheric methane and global change[J]. Earth-Science Reviews, 2002, 57(3/4): 177-210. |
9 | Control methane to slow global warming-fast[J]. Nature, 2021, 596(7873): 461. |
10 | 徐凯迪, 谢涛, 王升, 等. 太阳能甲烷干重整复杂反应体系的热化学储能特性[J]. 化工进展, 2019, 38(11): 4921-4929. |
XU Kaidi, XIE Tao, WANG Sheng, et al. Thermochemical energy storage characteristics of complex reaction system for solar methane dry reforming system[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4921-4929. | |
11 | KUMAR Bhupendra, LLORENTE Mark, FROEHLICH Jesse, et al. Photochemical and photoelectrochemical reduction of CO2 [J]. Annual Review of Physical Chemistry, 2012, 63: 541-569. |
12 | LABINGER Jay A, BERCAW John E. Understanding and exploiting C-H bond activation[J]. Nature, 2002, 417(6888): 507-514. |
13 | KONG Tingting, JIANG Yawen, XIONG Yujie. Photocatalytic CO2 conversion: What can we learn from conventional CO x hydrogenation?[J]. Chemical Society Reviews, 2020, 49(18): 6579-6591. |
14 | WANG C, SU Y, TAVASOLI A, et al. Recent advances in nanostructured catalysts for photo-assisted dry reforming of methane[J]. Materials Today Nano, 2021, 14: 100113. |
15 | WHITE James L, BARUCH Maor F, PANDER James E III, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes[J]. Chemical Reviews, 2015, 115(23): 12888-12935. |
16 | LI Xin, YU Jiaguo, JARONIEC Mietek, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179. |
17 | HONG Jindui, ZHANG Wei, REN Jia, et al. Photocatalytic reduction of CO2: A brief review on product analysis and systematic methods[J]. Analytical Methods, 2013, 5(5): 1086-1097. |
18 | LIANG Mengfang, BORJIGIN Timur, ZHANG Yuhao, et al. Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 243: 566-575. |
19 | MAIMAITI Halidan, AWATI Abuduheiremu, YISILAMU Gunisakezi, et al. Synthesis and visible-light photocatalytic CO2/H2O reduction to methyl formate of TiO2 nanoparticles coated by aminated cellulose[J]. Applied Surface Science, 2019, 466: 535-544. |
20 | BAFAQEER Abdullah, TAHIR Muhammad, AMIN Nor Aishah Saidina. Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels[J]. Applied Catalysis B: Environmental, 2019, 242: 312-326. |
21 | LI Dalin, NAKAGAWA Yoshinao, TOMISHIGE Keiichi. Methane reforming to synthesis gas over Ni catalysts modified with noble metals[J]. Applied Catalysis A: General, 2011, 408(1/2): 1-24. |
22 | FOPPA Lucas, SILAGHI Marius-Christian, LARMIER Kim, et al. Intrinsic reactivity of Ni, Pd and Pt surfaces in dry reforming and competitive reactions: Insights from first principles calculations and microkinetic modeling simulations[J]. Journal of Catalysis, 2016, 343: 196-207. |
23 | AKRI Mohcin, ZHAO Shu, LI Xiaoyu, et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nature Communications, 2019, 10: 5181. |
24 | HU Yun hang, Ruckenstein Eli. Comment on “Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO”[J]. Science, 2020, 368(6492): eabb5459. |
25 | SONG Youngdong, OZDEMIR Ercan, RAMESH Sreerangappa, et al. Response to Comment on “Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO”[J]. Science, 2020, 368(6492): eabb5680. |
26 | BEHESHTI ASKARI Abbas, SAMARAI Mustafa AL, HIRAOKA Nozomu, et al. In situ X-ray emission and high-resolution X-ray absorption spectroscopy applied to Ni-based bimetallic dry methane reforming catalysts[J]. Nanoscale, 2020, 12(28): 15185-15192. |
27 | BEHESHTI ASKARI Abbas, SAMARAI Mustafa AL, MORANA Bruno, et al. In situ X-ray microscopy reveals particle dynamics in a NiCo dry methane reforming catalyst under operating conditions[J]. ACS Catalysis, 2020, 10(11): 6223-6230. |
28 | KIM Sung Min, ABDALA Paula Macarena, MARGOSSIAN Tigran, et al. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J]. Journal of the American Chemical Society, 2017, 139(5): 1937-1949. |
29 | TANG Yu, WEI Yuechang, WANG Ziyun, et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4 [J]. Journal of the American Chemical Society, 2019, 141(18): 7283-7293. |
30 | KAWI Sibudjing, KATHIRASER Yasotha, NI Jun, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. ChemSusChem, 2015, 8(21): 3556-3575. |
31 | YOSHIUMI Kohno, TSUNEHIRO Tanaka, TAKUZO Funabiki, et al. Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2 [J]. Physical Chemistry Chemical Physics, 2000, 2(22): 5302-5307. |
32 | TERAMURA Kentaro, TANAKA Tsunehiro, ISHIKAWA Haruka, et al. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO[J]. The Journal of Physical Chemistry B, 2004, 108(1): 346-354. |
33 | YULIATI Leny, ITOH Hideaki, YOSHIDA Hisao. Photocatalytic conversion of methane and carbon dioxide over gallium oxide[J]. Chemical Physics Letters, 2008, 452(1/2/3): 178-182. |
34 | 许冰清, 张晓晴, 尚书勇. 光辐照驱动CH4/CO2催化重整制合成气[J]. 河南化工, 2013, 30(5): 32-36. |
XU Bingqing, ZHANG Xiaoqing, SHANG Shuyong. Syngas prepared from CO2 reforming of CH4 with light irradiation heating[J]. Henan Chemical Industry, 2013, 30(5): 32-36. | |
35 | 龙华丽, 胡诗婧, 徐艳, 等. 光辐照驱动CH4-CO2重整中Ni/MgO-Al2O3催化活性吸收体的活性[J]. 催化学报, 2011, 32(8): 1393-1399. |
LONG Huali, HU Shijing, XU Yan, et al. Catalytic activity of Ni/MgO-Al2O3 catalytically activated absorber for CO2 reforming with CH4 driven by direct light irradiation[J]. Chinese Journal of Catalysis, 2011, 32(8): 1393-1399. | |
36 | THOMAS J M. Principles and practice of heterogeneous catalysis[M]. L’Actualite Chimique, 2016: 54-55. |
37 | LIU Lichen, CORMA Avelino. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews, 2018, 118(10): 4981-5079. |
38 | JACOBSEN Claus J H, Søren DAHL, HANSEN Poul L, et al. Structure sensitivity of supported ruthenium catalysts for ammonia synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2000, 163(1/2): 19-26. |
39 | MIYAZAKI Akane, BALINT Ioan, AIKA Ken-ichi, et al. Preparation of Ru nanoparticles supported on γ-Al2O3 and its novel catalytic activity for ammonia synthesis[J]. Journal of Catalysis, 2001, 204(2): 364-371. |
40 | HONKALA K, HELLMAN A, REMEDIAKIS I N, et al. Ammonia synthesis from first-principles calculations[J]. Science, 2005, 307(5709): 555-558. |
41 | LIN S D, VANNICE M A. Hydrogenation of aromatic hydrocarbons over supported Pt Catalysts.Ⅰ. benzene hydrogenation[J]. Journal of Catalysis, 1993, 143(2): 539-553. |
42 | BARIÅS Odd A, HOLMEN Anders, BLEKKAN Edd A. Propane dehydrogenation over supported Pt and Pt-Sn catalysts: Catalyst preparation, characterization, and activity measurements[J]. Journal of Catalysis, 1996, 158(1): 1-12. |
43 | CAMPBELL Charles T, PAFFETT Mark T. Model studies of ethylene epoxidation catalyzed by the Ag(110) surface[J]. Surface Science, 1984, 139(2/3): 396-416. |
44 | PU Tiancheng, TIAN Huijie, FORD Michael E, et al. Overview of selective oxidation of ethylene to ethylene oxide by Ag catalysts[J]. ACS Catalysis, 2019, 9(12): 10727-10750. |
45 | WU Nae-Lih, LEE Min-Shuei. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution[J]. International Journal of Hydrogen Energy, 2004, 29(15): 1601-1605. |
46 | SAKTHIVEL S, SHANKAR M V, PALANICHAMY M, et al. Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J]. Water Research, 2004, 38(13): 3001-3008. |
47 | ZHU Zhen, Cheng-Tse KAO, TANG Binghong, et al. Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light[J]. Ceramics International, 2016, 42(6): 6749-6754. |
48 | AL-AZRI Zakiya H N, CHEN Wanting, CHAN Andrew, et al. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol-water mixtures[J]. Journal of Catalysis, 2015, 329: 355-367. |
49 | CHEN Wanting, CHAN Andrew, Dongxiao SUN-WATERHOUSE, et al. Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures[J]. Journal of Catalysis, 2018, 367: 27-42. |
50 | 郭淼鑫, 杜君臣, 李红, 等. 甲烷燃烧贵金属催化剂研究新进展[J]. 稀有金属, 2021, 45(9): 1133-1147. |
GUO Miaoxin, DU Junchen, LI Hong, et al. New research progress on precious metal catalysts for methane combustion[J]. Chinese Journal of Rare Metals, 2021, 45(9): 1133-1147. | |
51 | 赵一龙. Pt(Au)/TiO2@(类)石墨烯核壳结构催化剂的制备及其光催化CO2还原性能[D]. 北京: 中国石油大学(北京), 2018. |
ZHAO Yilong. Synthesis of core-shell structured Pt(Au)/TiO2@Graphene material catalysts and their performances for the photocatalytic reduction of CO2 [D]. Beijing: China University of Petroleum (Beijing), 2018. | |
52 | LÁSZLÓ B, KISS J. Photoreactions in CO2-CH4 system on metal modified titanate nanotubes[M]. Germany: LAP Lambert Academic Publishing, 2016. |
53 | TAHIR Beenish, TAHIR Muhammad, AMIN Nor Aishah Saidina. Tailoring performance of La-modified TiO2 nanocatalyst for continuous photocatalytic CO2 reforming of CH4 to fuels in the presence of H2O[J]. Energy Conversion and Management, 2018, 159: 284-298. |
54 | TAHIR Beenish, TAHIR Muhammad, AMIN Nor Aishah Saidina. Ag-La loaded protonated carbon nitrides nanotubes (pCNNT) with improved charge separation in a monolithic honeycomb photoreactor for enhanced bireforming of methane (BRM) to fuels[J]. Applied Catalysis B: Environmental, 2019, 248: 167-183. |
55 | HAN Bing, WEI Wei, CHANG Liang, et al. Efficient visible light photocatalytic CO2 reforming of CH4 [J]. ACS Catalysis, 2016, 6(2): 494-497. |
56 | LI Naixu, JIANG Rumeng, LI Yao, et al. Plasma-assisted photocatalysis of CH4 and CO2 into ethylene[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11455-11463. |
57 | TAHIR Beenish, TAHIR Muhammad, AMIN Nor Aishah Saidina. Silver loaded protonated graphitic carbon nitride (Ag/pg-C3N4) nanosheets for stimulating CO2 reduction to fuels via photocatalytic bi-reforming of methane[J]. Applied Surface Science, 2019, 493: 18-31. |
58 | LIU Huimin, MENG Xianguang, Thang Duy DAO, et al. Conversion of carbon dioxide by methane reforming under visible-light irradiation: Surface-plasmon-mediated nonpolar molecule activation[J]. Angewandte Chemie, 2015, 127(39): 11707-11711. |
59 | YANG Yuying, CHAI Zhigang, QIN Xuetao, et al. Light-induced redox looping of a rhodium/Ce x WO3 photocatalyst for highly active and robust dry reforming of methane[J]. Angewandte Chemie International Edition, 2022, 61(21): e202200567. |
60 | KOSINOV Nikolay, HENSEN Emiel J M. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization[J]. Advanced Materials, 2020, 32(44): 2002565. |
61 | ZHANG Feng, GUTIÉRREZ Ramón A, LUSTEMBERG Pablo G, et al. Metal-support interactions and C1 chemistry: Transforming Pt-CeO2 into a highly active and stable catalyst for the conversion of carbon dioxide and methane[J]. ACS Catalysis, 2021, 11(3): 1613-1623. |
62 | YUAN Kai, WANG Yuhao, LI Kongzhai, et al. LaFe0.8Co0.15Cu0.05O3 reforming of CH4 coupled with CO2 reduction[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39004-39013. |
63 | SUN Zhenkun, LU Dennis Y, SYMONDS Robert T, et al. Chemical looping reforming of CH4 in the presence of CO2 using ilmenite ore and NiO-modified ilmenite ore oxygen carriers[J]. Chemical Engineering Journal, 2020, 401: 123481. |
64 | 张铁锐, 王双印. 非贵金属电催化[J]. 物理化学学报, 2021, 37(7): 13-15. |
ZHANG Tierui, WANG Shuangyin. Noble-metal-free electrocatalysis[J]. Acta Physico-Chimica Sinica, 2021, 37(7): 13-15. | |
65 | FENG Manman, WU Xuemei, CHENG Huiyuan, et al. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction[J]. Journal of Materials Chemistry A, 2021, 9(42): 23817-23827. |
66 | ZHENG Tingting, JIANG Kun, Na TA, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019, 3(1): 265-278. |
67 | JU Wen, BAGGER Alexander, HAO Guangping, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2 [J]. Nature Communications, 2017, 8: 944. |
68 | Fenglei LYU, WANG Qingfa, CHOI Sung Mook, et al. Noble-metal-free electrocatalysts for oxygen evolution[J]. Small, 2019, 15(1): 1804201. |
69 | FENG Shuaijun, ZHAO Jie, BAI Yujie, et al. Facile synthesis of Mo-doped TiO2 for selective photocatalytic CO2 reduction to methane: Promoted H2O dissociation by Mo doping[J]. Journal of CO2 Utilization, 2020, 38: 1-9. |
70 | 金晓丽, 徐怡雪, 葛藤, 等. Fe单原子负载Bi4 O5I2: 显著提升光催化还原CO2活性[C]//河南省化学会2020年学术年会论文摘要集. 许昌, 2020: 385. |
71 | GUO Chunmei, GUO Biao, GAO Xiaosu, et al. Ni0.85Co0.15WO4 for photocatalytic reduction of CO2 under mild conditions with high activity and selectivity[J]. Catalysis Letters, 2020, 150(11): 3071-3078. |
72 | HUANG W, XIE K-C, WANG J-P, et al. Possibility of direct conversion of CH4 and CO2 to high-value products[J]. Journal of Catalysis, 2001, 201(1): 100-104. |
73 | YARAHMADI Akram, SHARIFNIA Shahram. Dye photosensitization of ZnO with metallophthalocyanines (Co, Ni and Cu) in photocatalytic conversion of greenhouse gases[J]. Dyes and Pigments, 2014, 107: 140-145. |
74 | LIU Huimin, Thang Duy DAO, LIU Lequan, et al. Light assisted CO2 reduction with methane over group Ⅷ metals: Universality of metal localized surface plasmon resonance in reactant activation[J]. Applied Catalysis B: Environmental, 2017, 209: 183-189. |
75 | LIU Xiang, WANG Zhiqiang, WU Yongzheng, et al. Integrating the Z-scheme heterojunction into a novel Ag2O@rGO@reduced TiO2 photocatalyst: Broadened light absorption and accelerated charge separation co-mediated highly efficient UV/visible/NIR light photocatalysis[J]. Journal of Colloid and Interface Science, 2019, 538: 689-698. |
76 | ZHANG Wanli, HUO Siying, YANG Siyuan, et al. Ternary monolithic ZnS/CdS/rGO photomembrane with desirable charge separation/transfer routes for effective photocatalytic and photoelectrochemical hydrogen generation[J]. Chemistry: an Asian Journal, 2019, 14(19): 3431-3441. |
77 | CHEN Wenqian, ZHANG Shaomei, WANG Ganyu, et al. Rationally designed CdS-based ternary heterojunctions: A case of 1T-MoS2 in CdS/TiO2 photocatalyst[J]. Nanomaterials, 2020, 11(1): 38. |
78 | LI Teng, JIN Zhiliang. Unique ternary Ni-MOF-74/Ni2P/MoS x composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. Journal of Colloid and Interface Science, 2022, 605: 385-397. |
79 | LUO Yue, LI Bo, LIU Xiangmei, et al. Simultaneously enhancing the photocatalytic and photothermal effect of NH2-MIL-125-GO-Pt ternary heterojunction for rapid therapy of bacteria-infected wounds[J]. Bioactive Materials, 2022, 18: 421-432. |
80 | SHI Daxin, FENG Yaqing, ZHONG Shunhe. Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS-TiO2/SiO2 catalyst[J]. Catalysis Today, 2004, 98(4): 505-509. |
81 | PAN Fuping, XIANG Xianmei, DENG Wei, et al. A novel photo-thermochemical approach for enhanced carbon dioxide reforming of methane[J]. ChemCatChem, 2018, 10(5): 940-945. |
82 | TAHIR Muhammad, TAHIR Beenish, ZAKARIA Zaki Yamani, et al. Enhanced photocatalytic carbon dioxide reforming of methane to fuels over nickel and montmorillonite supported TiO2 nanocomposite under UV-light using monolith photoreactor[J]. Journal of Cleaner Production, 2019, 213: 451-461. |
83 | ZHOU Linan, MARTIREZ John Mark P, FINZEL Jordan, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts[J]. Nature Energy, 2020, 5(1): 61-70. |
84 | LIU Jinlong, ZHANG Yaqian, ZHANG Lei, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials, 2019, 31(24): 1901261. |
85 | YOON Yeoheung, LEE Minhe, KIM Seong Ku, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for high-performance supercapacitor electrodes[J]. Advanced Energy Materials, 2018, 8(15): 1703173. |
86 | RAHMAN Mohammad Z, Buddie MULLINS C. Understanding charge transport in carbon nitride for enhanced photocatalytic solar fuel production[J]. Accounts of Chemical Research, 2019, 52(1): 248-257. |
87 | XIA Pengfei, ANTONIETTI Markus, ZHU Bicheng, et al. Designing defective crystalline carbon nitride to enable selective CO2 photoreduction in the gas phase[J]. Advanced Functional Materials, 2019, 29(15): 1900093. |
88 | LIU Bing, YE Liqun, WANG Ran, et al. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4001-4009. |
89 | WANG Ke, LI Qin, LIU Baoshun, et al. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance[J]. Applied Catalysis B: Environmental, 2015, 176/177: 44-52. |
90 | WANG Yang, LIU Xueqin, ZHENG Cunchuan, et al. Tailoring TiO2 nanotube-interlaced graphite carbon nitride nanosheets for improving visible-light-driven photocatalytic performance[J]. Advanced Science, 2018, 5(6): 1700844. |
91 | LIU Yanan, MA Liubo, SHEN Congcong, et al. Highly enhanced visible-light photocatalytic hydrogen evolution on g-C3N4 decorated with vopc through π-π interaction[J]. Chinese Journal of Catalysis, 2019, 40(2): 168-176. |
92 | CAI Jingsheng, HUANG Jianying, WANG Shanchi, et al. Environmental remediation: Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources[J]. Advanced Materials, 2019, 31(15): 1970110. |
93 | MALIK Ritu, TOMER Vijay K, CHAUDHARY Vandna, et al. A low temperature, highly sensitive and fast response toluene gas sensor based on In(Ⅲ)-SnO2 loaded cubic mesoporous graphitic carbon nitride[J]. Sensors and Actuators B: Chemical, 2018, 255: 3564-3575. |
94 | JIA Lichao, MANE Gurudas P, Anand Chokkalingam, et al. A facile photo-induced synthesis of COOH functionalized meso-macroporous carbon films and their excellent sensing capability for aromatic amines[J]. Chemical Communications, 2012, 48(72): 9029-9031. |
95 | TALAPANENI Siddulu Naidu, SINGH Gurwinder, KIM In Young, et al. Nanostructured carbon nitrides for CO2 capture and conversion[J]. Advanced Materials, 2020, 32(18): 1904635. |
96 | LI Yang, LI Baihai, ZHANG Dainan, et al. Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity[J]. ACS Nano, 2020, 14(8): 10552-10561. |
97 | TAHIR Beenish, TAHIR Muhammad, AMIN Nor Aishah Saidina. Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4 nanorods under simulated solar energy[J]. Applied Surface Science, 2017, 419: 875-885. |
98 | CHEN Ming, WU Jiachen, LU Chongchong, et al. Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature[J]. Green Energy & Environment, 2021, 6(6): 938-951. |
99 | LI Ziyi, MAO Yu, HUANG Yufei, et al. Theoretical and experimental studies of highly efficient all-solid Z-scheme TiO2–TiC/g-C3N4 for photocatalytic CO2 reduction via dry reforming of methane[J]. Catalysis Science & Technology, 2022, 12(9): 2804-2818. |
100 | KHAN Azmat ALI, TAHIR Muhammad. Well-designed 2D/2D Ti3C2TA/R MXene coupled g-C3N4 heterojunction with in situ growth of anatase/rutile TiO2 nucleates to boost photocatalytic dry-reforming of methane (DRM) for syngas production under visible light[J]. Applied Catalysis B: Environmental, 2021, 285: 119777. |
101 | MADI Mohamed, TAHIR Muhammad. FabricatingV2 AlC/g-C3N4 nanocomposite with MAX as electron moderator for promoting photocatalytic CO2-CH4 reforming to CO/H2 [J]. International Journal of Energy Research, 2022, 46(6): 7666-7685. |
102 | IKREEDEEGH Riyadh Ramadhan, TAHIR Muhammad. Facile fabrication of well-designed 2D/2D porous g-C3N4-GO nanocomposite for photocatalytic methane reforming (DRM) with CO2 towards enhanced syngas production under visible light[J]. Fuel, 2021, 305: 121558. |
103 | MAHMODI G, SHARIFNIA S, RAHIMPOUR F, et al. Photocatalytic conversion of CO2 and CH4 using ZnO coated mesh: Effect of operational parameters and optimization[J]. Solar Energy Materials and Solar Cells, 2013, 111: 31-40. |
104 | Torabi MERAJIN M, SHARIFNIA S, HOSSEINI S N, et al. Photocatalytic conversion of greenhouse gases (CO2 and CH4) to high value products using TiO2 nanoparticles supported on stainless steel webnet[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(2): 239-246. |
105 | YAZDANPOUR Neda, SHARIFNIA Shahram. Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2 [J]. Solar Energy Materials and Solar Cells, 2013, 118: 1-8. |
106 | DELAVARI Saeed, AMIN Nor Aishah Saidina. Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: Optimization and kinetic study[J]. Applied Energy, 2016, 162: 1171-1185. |
107 | TAHIR Muhammad. Enhanced photocatalytic CO2 reduction to fuels through bireforming of methane over structured 3D MAX Ti3AlC2/TiO2 heterojunction in a monolith photoreactor[J]. Journal of CO2 Utilization, 2020, 38: 99-112. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[4] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[13] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[14] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[15] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |