Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 3926-3942.DOI: 10.16085/j.issn.1000-6613.2023-0464
Previous Articles Next Articles
PAN Yichang(), ZHOU Rongfei, XING Weihong()
Received:
2023-03-24
Revised:
2023-05-27
Online:
2023-09-19
Published:
2023-08-15
Contact:
XING Weihong
通讯作者:
邢卫红
作者简介:
潘宜昌(1983—),男,研究员,研究方向气体分离膜。E-mail:panyc@njtech.edu.cn。
基金资助:
CLC Number:
PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942.
潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0464
膜种类 | 制备方法 | 支撑体 | 厚度/µm | 参考文献 |
---|---|---|---|---|
沸石分子 筛膜(MFI) | 低温快速合成 | α-氧化铝管 | 0.6 | [ |
二次生长 | α-氧化铝片 | 0.3~0.4 | [ | |
干凝胶法+微波法 | 氧化铝中空纤维 | 0.4 | [ | |
无凝胶二次生长法 | SiO2片 | 0.2 | [ | |
无凝胶二次生长法 | 烧结石英纤维 | 0.1 | [ | |
微波二次生长法 | α-氧化铝片 | 0.38 | [ | |
MOF膜 (ZIF-8) | 二次生长 | α-氧化铝片 | 2.5 | [ |
电化学 | 阳极氧化铝片 | 0.2 | [ | |
反扩散 | Torlon中空纤维 | 2 | [ | |
凝胶气相沉积 | PVDF中空纤维 | 0.017 | [ | |
界面诱导 | 聚砜 | 0.045 | [ |
膜种类 | 制备方法 | 支撑体 | 厚度/µm | 参考文献 |
---|---|---|---|---|
沸石分子 筛膜(MFI) | 低温快速合成 | α-氧化铝管 | 0.6 | [ |
二次生长 | α-氧化铝片 | 0.3~0.4 | [ | |
干凝胶法+微波法 | 氧化铝中空纤维 | 0.4 | [ | |
无凝胶二次生长法 | SiO2片 | 0.2 | [ | |
无凝胶二次生长法 | 烧结石英纤维 | 0.1 | [ | |
微波二次生长法 | α-氧化铝片 | 0.38 | [ | |
MOF膜 (ZIF-8) | 二次生长 | α-氧化铝片 | 2.5 | [ |
电化学 | 阳极氧化铝片 | 0.2 | [ | |
反扩散 | Torlon中空纤维 | 2 | [ | |
凝胶气相沉积 | PVDF中空纤维 | 0.017 | [ | |
界面诱导 | 聚砜 | 0.045 | [ |
膜类型 | 支撑体类型 | 制备方法 | 膜面积/cm2 | C3H6或n-C4H10渗透速率①/10-8mol·m-2·s-1·Pa-1 | 分离因子 | 参考文献 | |
---|---|---|---|---|---|---|---|
单个膜 | 膜组件 | ||||||
沸石分子筛膜(MFI) | 不锈钢管状支撑体 | 原位合成法 | 15.7 | — | 4 | 18 | [ |
α-Al2O3管状支撑体 | 二次生长法 | 94 | — | 1 | 78 | [ | |
TiO2管状支撑体 | 二次生长法 | 78.5 | — | 1.6 | 6 | [ | |
α-Al2O3管状支撑体 | 二次生长法 | 180 | 3800 | 13 | 45 | [ | |
19通道α-Al2O3支撑体 | 二次生长法 | 84 | — | 10.3 | 51 | [ | |
19通道α-Al2O3支撑体 | 二次生长法 | 270 | — | 6.4 | 32 | [ | |
61通道α-Al2O3支撑体 | 二次生长法 | 190 | — | 8.1 | 28 | [ | |
MOF膜 (ZIF-8) | PVDF中空纤维 | 凝胶-气相沉积法 | 11.3 | 340 | 28 | 70 | [ |
陶瓷管状支撑体 | 晶种-二次生长法 | 24.5 | — | 1.3 | 67 | [ | |
陶瓷管状支撑体 | 电化学合成法 | — | — | 0.6 | 63 | [ | |
陶瓷管状支撑体 | 前体辅助生长法 | 25 | 157 | 1.08 | 55 | [ | |
陶瓷平板支撑体 | 浸涂-热转换法 | 100 | 300 | 0.24 | 38 | [ |
膜类型 | 支撑体类型 | 制备方法 | 膜面积/cm2 | C3H6或n-C4H10渗透速率①/10-8mol·m-2·s-1·Pa-1 | 分离因子 | 参考文献 | |
---|---|---|---|---|---|---|---|
单个膜 | 膜组件 | ||||||
沸石分子筛膜(MFI) | 不锈钢管状支撑体 | 原位合成法 | 15.7 | — | 4 | 18 | [ |
α-Al2O3管状支撑体 | 二次生长法 | 94 | — | 1 | 78 | [ | |
TiO2管状支撑体 | 二次生长法 | 78.5 | — | 1.6 | 6 | [ | |
α-Al2O3管状支撑体 | 二次生长法 | 180 | 3800 | 13 | 45 | [ | |
19通道α-Al2O3支撑体 | 二次生长法 | 84 | — | 10.3 | 51 | [ | |
19通道α-Al2O3支撑体 | 二次生长法 | 270 | — | 6.4 | 32 | [ | |
61通道α-Al2O3支撑体 | 二次生长法 | 190 | — | 8.1 | 28 | [ | |
MOF膜 (ZIF-8) | PVDF中空纤维 | 凝胶-气相沉积法 | 11.3 | 340 | 28 | 70 | [ |
陶瓷管状支撑体 | 晶种-二次生长法 | 24.5 | — | 1.3 | 67 | [ | |
陶瓷管状支撑体 | 电化学合成法 | — | — | 0.6 | 63 | [ | |
陶瓷管状支撑体 | 前体辅助生长法 | 25 | 157 | 1.08 | 55 | [ | |
陶瓷平板支撑体 | 浸涂-热转换法 | 100 | 300 | 0.24 | 38 | [ |
1 | WEI Ruicong, LIU Xiaowei, LAI Zhiping. MOF or COF membranes for olefin/paraffin separation: Current status and future research directions[J]. Advanced Membranes, 2022, 2: 100035. |
2 | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
3 | YANG Lifeng, QIAN Siheng, WANG Xiaobing, et al. Energy-efficient separation alternatives: Metal-organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406. |
4 | MANISH Kumar, STONE Howard A. Membrane science emerging as a convergent scientific field with molecular origins and understanding, and global impact[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2106494118. |
5 | DOU Haozhen, XU Mi, WANG Baoyu, et al. Microporous framework membranes for precise molecule/ion separations[J]. Chemical Society Reviews, 2021, 50(2): 986-1029. |
6 | HOU Junjun, LIU Pengchao, JIANG Meihuizi, et al. Olefin/paraffin separation through membranes: From mechanisms to critical materials[J]. Journal of Materials Chemistry A, 2019, 7(41): 23489-23511. |
7 | KOROS William J, ZHANG Chen. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
8 | ROY Abhishek, VENNA Surendar R, ROGERS Gerard, et al. Membranes for olefin-paraffin separation: An industrial perspective[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2022194118. |
9 | ZHOU Rongfei, PAN Yichang, XING Weihong, et al. Advanced microporous membranes for H2/CH4 separation: Challenges and perspectives[J]. Advanced Membranes, 2021, 1: 100011. |
10 | HOU Jue, ZHANG Huacheng, SIMON George P, et al. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions[J]. Advanced Materials, 2020, 32(18): 1902009. |
11 | SHI Dongchen, YU Xin, FAN Weidong, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coordination Chemistry Reviews, 2021, 437: 213794. |
12 | 柳波, 潘宜昌, 周荣飞, 等. 面向氢气/甲烷分离分子筛膜微结构调控的研究进展[J]. 化工学报, 2021, 72(12): 6073-6085. |
LIU Bo, PAN Yichang, ZHOU Rongfei, et al. Research progress on microstructure regulation of molecular sieving membranes for H2/CH4 separation[J]. CIESC Journal, 2021, 72(12): 6073-6085. | |
13 | RANGNEKAR N, MITTAL N, ELYASSI B, et al. Zeolite membranes–a review and comparison with MOFs[J]. Chemical Society Reviews, 2015, 44(20): 7128-7154. |
14 | ALGIERI Catia, DRIOLI Enrico. Zeolite membranes: Synthesis and applications[J]. Separation and Purification Technology, 2021, 278: 119295. |
15 | 潘宜昌, 邢卫红. 丙烯/丙烷分离的ZIF-8膜研究进展[J]. 化工进展, 2020, 39(6): 2036-2048. |
PAN Yichang, XING Weihong. Recent progress of ZIF-8 membrane for propylene/propane separation[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2036-2048. | |
16 | CHENG Youdong, SHUVO JIT Datta, ZHOU Sheng, et al. Advances in metal-organic framework-based membranes[J]. Chemical Society Reviews, 2022, 51(19): 8300-8350. |
17 | ZHANG Chao, WU Baiheng, MA Mengqi, et al. Ultrathin metal/covalent-organic framework membranes towards ultimate separation[J]. Chemical Society Reviews, 2019, 48(14): 3811-3841. |
18 | XOMERITAKIS George, NAIR Sankar, TSAPATSIS Michael. Transport properties of alumina-supported MFI membranes made by secondary (seeded) growth[J]. Microporous and Mesoporous Materials, 2000, 38(1): 61-73. |
19 | QIU Heng'e, XU Ning, KONG Lin, et al. Fast synthesis of thin Silicalite-1 zeolite membranes at low temperature[J]. Journal of Membrane Science, 2020, 611: 118361. |
20 | LEE Pyung-Soo, ZHANG Xueyi, STOEGER Jared A, et al. Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1[J]. Journal of the American Chemical Society, 2011, 133(3): 493-502. |
21 | KIDA Koji, MAETA Yasushi, YOGO Katsunori. Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation[J]. Separation and Purification Technology, 2018, 197: 116-121. |
22 | CARREON Moises A, LI Shiguang, FALCONER John L, et al. Alumina-supported SAPO-34 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2008, 130(16): 5412-5413. |
23 | TANG Xiaoxue, ZHANG Ye, MENG Danni, et al. Efficient synthesis of thin SSZ-13 membranes by gel-less method[J]. Journal of Membrane Science, 2021, 620: 118920. |
24 | LIU Bo, KITA Hidetoshi, YOGO Katsunori. Preparation of Si-rich LTA zeolite membrane using organic template-free solution for methanol dehydration[J]. Separation and Purification Technology, 2020, 239: 116533. |
25 | LU Xiaofei, YANG Yanwei, ZHANG Junjia, et al. Solvent-free secondary growth of highly b-oriented MFI zeolite films from anhydrous synthetic powder[J]. Journal of the American Chemical Society, 2019, 141(7): 2916-2919. |
26 | PHAM Tung Cao Thanh, NGUYEN Thanh Huu, YOON Kyung Byung. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation[J]. Angewandte Chemie International Edition, 2013, 52(33): 8693-8698. |
27 | DAKHCHOUNE Mostapha, VILLALOBOS Luis Francisco, SEMINO Rocio, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20(3): 362-369. |
28 | WANG Bin, WU Tangyin, YU Miao, et al. Highly ordered nanochannels in a nanosheet-directed thin zeolite nanofilm for precise and fast CO2 separation[J]. Small, 2020, 16(41): 2002836. |
29 | VAROON Kumar, ZHANG Xueyi, ELYASSI Bahman, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane[J]. Science, 2011, 334(6052): 72-75. |
30 | AGRAWAL Kumar Varoon, TOPUZ Berna, PHAM Tung Cao Thanh, et al. Oriented MFI membranes by gel-less secondary growth of sub-100nm MFI-nanosheet seed layers[J]. Advanced Materials, 2015, 27(21): 3243-3249. |
31 | LIU Yi, LI Mingrun, CHEN Zhigang, et al. Hierarchy control of MFI zeolite membrane towards superior butane isomer separation performance[J]. Angewandte Chemie International Edition, 2021, 60(14): 7659-7663. |
32 | PAN Yichang, LAI Zhiping. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions[J]. Chemical Communications, 2011, 47(37): 10275-10277. |
33 | ZHOU Sheng, WEI Yanying, LI Libo, et al. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Science Advances, 2018, 4(10): eaau1393. |
34 | BROWN Andrew J, BRUNELLI Nicholas A, KIWON Eum, et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes[J]. Science, 2014, 345(6192): 72-75. |
35 | LI Wanbin, SU Pengcheng, LI Zhanjun, et al. Ultrathin metal-organic framework membrane production by gel-vapour deposition[J]. Nature Communications, 2017, 8: 406. |
36 | QIAO Zhihua, LIANG Yueyao, ZHANG Zhengqing, et al. Ultrathin low-crystallinity MOF membranes fabricated by interface layer polarization induction[J]. Advanced Materials, 2020, 32(34): 2002165. |
37 | WANG Jianyu, WANG Yan, LIU Yutao, et al. Ultrathin ZIF-8 membrane through inhibited Ostwald ripening for high-flux C3H6/C3H8 separation[J]. Advanced Functional Materials, 2022, 32(47): 2208064. |
38 | BARANKOVA Eva, TAN Xiaoyu, VILLALOBOS Luis Francisco, et al. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane[J]. Angewandte Chemie International Edition, 2017, 56(11): 2965-2968. |
39 | PENG Yuan, LI Yanshuo, BAN Yujie, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
40 | YANG Fan, MU Hao, WANG Chongqing, et al. Morphological map of ZIF-8 crystals with five distinctive shapes: Feature of filler in mixed-matrix membranes on C3H6/C3H8 separation[J]. Chemistry of Materials, 2018, 30(10): 3467-3473. |
41 | HOU Qianqian, WU Ying, ZHOU Sheng, et al. Inside cover: Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation (angew. chem. int. Ed. 1/2019)[J]. Angewandte Chemie International Edition, 2019, 58(1): 2. |
42 | HOU Qianqian, ZHOU Sheng, WEI Yanying, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation[J]. Journal of the American Chemical Society, 2020, 142(21): 9582-9586. |
43 | WEI Ruicong, CHI Hengyu, LI Xiang, et al. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation[J]. Advanced Functional Materials, 2020, 30(7): 1907089. |
44 | ZHOU Sheng, SHEKHAH Osama, JIA Jiangtao, et al. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons[J]. Nature Energy, 2021, 6(9): 882-891. |
45 | ZHOU Sheng, SHEKHAH Osama, Adrian RAMÍREZ, et al. Asymmetric pore windows in MOF membranes for natural gas valorization[J]. Nature, 2022, 606(7915): 706-712. |
46 | LI Yichuan, ZHU Guofu, WANG Yu, et al. Preparation, mechanism and applications of oriented MFI zeolite membranes: A review[J]. Microporous and Mesoporous Materials, 2021, 312: 110790. |
47 | LU Xiaofei, WANG Hongsheng, YANG Yanwei, et al. Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives[J]. Journal of Membrane Science, 2022, 662: 120931. |
48 | WANG Zhengbao, YAN Yushan. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization[J]. Chemistry of Materials, 2001, 13(3): 1101-1107. |
49 | ZHANG F Z, FUJI M, TAKAHASHI M. Preparation of b-oriented MFI zeolite membranes on porous α-alumina substrates precoated with mesoporous silica sublayer[J]. Journal of Materials Science, 2005, 40(9): 2729-2732. |
50 | LAI Zhiping, BONILLA Griselda, DIAZ Isabel, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
51 | WANG Qing, WU Amei, ZHONG Shenglai, et al. Highly (h0h)-oriented silicalite-1 membranes for butane isomer separation[J]. Journal of Membrane Science, 2017, 540: 50-59. |
52 | WU Amei, TANG Congyong, ZHONG Shenglai, et al. Synthesis optimization of (h0h)-oriented silicalite-1 membranes for butane isomer separation[J]. Separation and Purification Technology, 2019, 214: 51-60. |
53 | SUN Kuo, LIU Bo, ZHONG Shenglai, et al. Fast preparation of oriented silicalite-1 membranes by microwave heating for butane isomer separation[J]. Separation and Purification Technology, 2019, 219: 90-99. |
54 | JEON Mi Young, KIM Donghun, KUMAR Prashant, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017, 543(7647): 690-694. |
55 | KIM Donghun, JEON Mi Young, STOTTRUP Benjamin L, et al. Para-xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface[J]. Angewandte Chemie International Edition, 2018, 57(2): 480-485. |
56 | KIM Donghun, GHOSH Supriya, AKTER Nusnin, et al. Twin-free, directly synthesized MFI nanosheets with improved thickness uniformity and their use in membrane fabrication[J]. Science Advances, 2022, 8(14): eabm8162. |
57 | LIU Yi, QIANG Weili, JI Taotao, et al. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Science Advances, 2020, 6(7): eaay5993. |
58 | LIU Yi, LU Jinming, LIU Yi. Single-mode microwave heating-induced concurrent out-of-plane twin growth suppression and in-plane epitaxial growth promotion of b-oriented MFI film under mild reaction conditions[J]. Chemistry-an Asian Journal, 2020, 15(8): 1277-1280. |
59 | WEI Ruicong, LIU Xiaowei, ZHOU Zongyao, et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation[J]. Science Advances, 2022, 8(7): eabm6741. |
60 | WANG Chongqing, YANG Fan, SHENG Luqian, et al. Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation[J]. Chemical Communications, 2016, 52(85): 12578-12581. |
61 | Kiwon EUM, HAYASHI Mikio, DE MELLO Matheus Dorneles, et al. ZIF-8 membrane separation performance tuning by vapor phase ligand treatment[J]. Angewandte Chemie International Edition, 2019, 58(46): 16390-16394. |
62 | SONG Eryue, WEI Kaifeng, LIAN Haiqian, et al. Improved propylene/propane separation performance under high temperature and pressures on in situ ligand-doped ZIF-8 membranes[J]. Journal of Membrane Science, 2021, 617: 118655. |
63 | KNEBEL A, GEPPERT B, VOLGMANN K, et al. Defibrillation of soft porous metal-organic frameworks with electric fields[J]. Science, 2017, 358(6361): 347-351. |
64 | BABU Deepu J, HE Guangwei, HAO Jian, et al. Restricting lattice flexibility in polycrystalline metal-organic framework membranes for carbon capture[J]. Advanced Materials, 2019, 31(28): 1900855. |
65 | HAO Jian, BABU Deepu J, LIU Qi, et al. Mechanistic study on thermally induced lattice stiffening of ZIF-8[J]. Chemistry of Materials, 2021, 33(11): 4035-4044. |
66 | QU Kai, HUANG Kang, XU Jipeng, et al. High-efficiency CO2/N2 separation enabled by rotation of electrostatically anchored flexible ligands in metal-organic framework[J]. Angewandte Chemie International Edition, 2022, 61(49): e202213333. |
67 | LIU Yi, BAN Yujie, YANG Weishen. Microstructural engineering and architectural design of metal-organic framework membranes[J]. Advanced Materials, 2017, 29(31): 1606949. |
68 | PENG Yong, LU Huibin, WANG Zhengbao, et al. Microstructural optimization of MFI-type zeolite membranes for ethanol-water separation[J]. Journal of Materials Chemistry A, 2014, 2(38): 16093-16100. |
69 | Jessica O’BRIEN-ABRAHAM, KANEZASHI Masakoto, LIN Y S. A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes[J]. Microporous and Mesoporous Materials, 2007, 105(1/2): 140-148. |
70 | HONG Sungwon, KIM Dongjae, RICHTER Hannes, et al. Quantitative elucidation of the elusive role of defects in polycrystalline MFI zeolite membranes on xylene separation performance[J]. Journal of Membrane Science, 2019, 569: 91-103. |
71 | KIM Eunjoo, CHOI Jungkyu, TSAPATSIS Michael. On defects in highly a-oriented MFI membranes[J]. Microporous and Mesoporous Materials, 2013, 170: 1-8. |
72 | CHOI Jungkyu, JEONG Hae-Kwon, SNYDER Mark A, et al. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing[J]. Science, 2009, 325(5940): 590-593. |
73 | CHANG Na, TANG Hongbo, BAI Lu, et al. Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes[J]. Journal of Membrane Science, 2018, 552: 13-21. |
74 | LEE Minseong, LEE Gihoon, JEONG Yanghwan, et al. Understanding and improving the modular properties of high-performance SSZ-13 membranes for effective flue gas treatment[J]. Journal of Membrane Science, 2022, 646: 120246. |
75 | HENG Samuel, LAU Prudence Pui Sze, YEUNG King Lun, et al. Low-temperature ozone treatment for organic template removal from zeolite membrane[J]. Journal of Membrane Science, 2004, 243(1/2): 69-78. |
76 | WANG Lin, ZHANG Chun, GAO Xuechao, et al. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature[J]. Journal of Membrane Science, 2017, 539: 152-160. |
77 | KWON Hyuk Taek, JEONG Hae-Kwon. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation[J]. Journal of the American Chemical Society, 2013, 135(29): 10763-10768. |
78 | LIAN Haiqian, SONG Eryue, BAO Bin, et al. Highly steam-stable CHA-type zeolite imidazole framework ZIF-302 membrane for hydrogen separation[J]. Separation and Purification Technology, 2022, 281: 119875. |
79 | SHENG Luqian, WANG Chongqing, YANG Fan, et al. Enhanced C3H6/C3H8 separation performance on MOF membranes through blocking defects and hindering framework flexibility by silicone rubber coating[J]. Chemical Communications, 2017, 53(55): 7760-7763. |
80 | LI Jinfu, LIAN Haiqian, WEI Kaifeng, et al. Synthesis of tubular ZIF-8 membranes for propylene/propane separation under high-pressure[J]. Journal of Membrane Science, 2020, 595: 117503. |
81 | HUA Jingxian, LI Chang, TAO Hongxu, et al. Improved C3H6/C3H8 separation performance on ZIF-8 membranes through enhancing PDMS contact-dependent confinement effect[J]. Journal of Membrane Science, 2021, 636: 119613. |
82 | PARK Sunghwan, CHO Kie Yong, JEONG Hae-Kwon. Enhancing the propylene/propane separation performances of ZIF-8 membranes by post-synthetic surface polymerization[J]. Journal of Materials Chemistry A, 2022, 10(4): 1940-1947. |
83 | HAYASHI Mikio, LEE Dennis T, DE MELLO Matheus Dorneles, et al. ZIF-8 membrane permselectivity modification by manganese(Ⅱ) acetylacetonate vapor treatment[J]. Angewandte Chemie International Edition, 2021, 60(17): 9316-9320. |
84 | BAN Yujie, YANG Weishen. Multidimensional building blocks for molecular sieve membranes[J]. Accounts of Chemical Research, 2022, 55(21): 3162-3177. |
85 | MORIGAMI Yoshio, KONDO Masakazu, Jun ABE, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane[J]. Separation and Purification Technology, 2001, 25(1/2/3): 251-260. |
86 | BERNAL M P, CORONAS J, MENÉNDEZ M, et al. On the effect of morphological features on the properties of MFI zeolite membranes[J]. Microporous and Mesoporous Materials, 2003, 60(1/2/3): 99-110. |
87 | LI Yongsheng, ZHANG Xiongfu, WANG Jinqu. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis[J]. Separation and Purification Technology, 2001, 25(1/2/3): 459-466. |
88 | RICHTER Hannes, Hartwig VOß, VOIGT Ingolf, et al. High-flux ZSM-5 membranes with an additional non-zeolite pore system by alcohol addition to the synthesis batch and their evaluation in the 1-butene/i-butene separation[J]. Separation and Purification Technology, 2010, 72(3): 388-394. |
89 | MIN Byunghyun, YANG Shaowei, KORDE Akshay, et al. Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers[J]. Angewandte Chemie International Edition, 2019, 58(24): 8201-8205. |
90 | LI Yanmei, WANG Yulei, GUO Mingyang, et al. High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations[J]. Journal of Membrane Science, 2021, 629: 119277. |
91 | HUANG Weijie, HE Zibo, LIU Bo, et al. Large surface-to-volume-ratio and ultrahigh selectivity SSZ-13 membranes on 61-channel monoliths for efficient separation of CO2/CH4 mixture[J]. Separation and Purification Technology, 2023, 311: 123285. |
92 | ZHOU Junjing, WU Shijie, LIU Bo, et al. Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture[J]. Separation and Purification Technology, 2022, 293: 121122. |
93 | WANG Bin, WU Haolin, CUI Liyun, et al. Scalable synthesis and modular properties of tubular silicalite-1 membranes for industrial butane isomer separation[J]. Separation and Purification Technology, 2023, 313: 123496. |
94 | WU Jiyang, WU Haolin, WANG Bin, et al. One-step scalable fabrication of highly selective monolithic zeolite MFI membranes for efficient butane isomer separation[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21198-21206. |
95 | MA Bin, ZHU Yancai, HONG Hongliang, et al. Improved silicalite-1 membranes on 61-channel monolithic supports for n-butane/i-butane separation[J]. Separation and Purification Technology, 2022, 300: 121828. |
96 | Choi Jungkyu, Ghosh Shubhajit, King Lisa, et al. MFI zeolite membranes from a- and randomly oriented monolayers[J]. Adsorption, 2006, 12(5): 339-360. |
97 | SHIRAZI Mohammad Mahdi A, KARGARI Ali, ISMAIL Ahmad Fauzi, et al. Computational Fluid Dynamic (CFD) opportunities applied to the membrane distillation process: State-of-the-art and perspectives[J]. Desalination, 2016, 377: 73-90. |
98 | 于艳, 樊耀波, 徐国良, 等. 计算流体力学对膜生物反应器水力学特征的模拟研究[J]. 膜科学与技术, 2011, 31(4): 9-16. |
YU Yan, FAN Yaobo, XU Guoliang, et al. Hydraulic simulation of MBR with computational fluid dynamics[J]. Membrane Science and Technology, 2011, 31(4): 9-16. | |
99 | WANG Jiacheng, GAO Xuechao, JI Guozhao, et al. CFD simulation of hollow fiber supported NaA zeolite membrane modules[J]. Separation and Purification Technology, 2019, 213: 1-10. |
100 | KLEMOLA Kimmo T, ILME Jarno K. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator[J]. Industrial & Engineering Chemistry Research, 1996, 35(12): 4579-4586. |
101 | MITTAL Nitish, BAI Peng, KELLOWAY Adam, et al. A mathematical model for zeolite membrane module performance and its use for techno-economic evaluation of improved energy efficiency hybrid membrane-distillation processes for butane isomer separations[J]. Journal of Membrane Science, 2016, 520: 434-449. |
102 | 张晨昕. 分离CO2膜传质机理及其过程模拟研究[D]. 天津: 天津大学, 2014. |
ZHANG Chenxin. Mass transport mechanism investigation and process simulation for CO2 separation membrane[D]. Tianjin: Tianjin University, 2014. | |
103 | 许家友. CO2膜分离过程的模拟及优化[D]. 天津: 天津大学, 2019. |
XU Jiayou. Simulation and optimization of membrane processes for CO2 separation[D]. Tianjin: Tianjin University, 2019. | |
104 | ZHAO Yali, YANG Xiayi, LUO Jiayu, et al. Fast-current-driven synthesis of ultrathin ZIF-8 membrane on ceramic tube for propene/propane separation[J]. AIChE Journal, 2023, 69(4): e17934. |
105 | LIAN Haiqian, YANG Yu, CHEN Jinfeng, et al. Highly durable ZIF-8 tubular membranes via precursor-assisted processing for propylene/propane separation[J]. Journal of Membrane Science, 2022, 660: 120813. |
106 | MA Qiang, MO Kai, GAO Shushu, et al. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation[J]. Angewandte Chemie International Edition, 2020, 59(49): 21909-21914. |
107 | LEE Moon Joo, ABDUL HAMID Mohamad Rezi, LEE Jongmyeong, et al. Ultrathin zeolitic-imidazolate framework ZIF-8 membranes on polymeric hollow fibers for propylene/propane separation[J]. Journal of Membrane Science, 2018, 559: 28-34. |
108 | LIAN Haiqian, BAO Bin, CHEN Jinfeng, et al. Controllable synthesis of ZIF-8 interlocked membranes for propylene/propane separation[J]. Separation and Purification Technology, 2022, 300: 121811. |
109 | SUN Jingze, YU Chen, JEONG Hae-Kwon. Propylene-selective thin zeolitic imidazolate framework membranes on ceramic tubes by microwave seeding and solvothermal secondary growth[J]. Crystals, 2018, 8(10): 373. |
110 | AMEDI Hamid Reza, AGHAJANI Masoud. Economic estimation of various membranes and distillation for propylene and propane separation[J]. Industrial & Engineering Chemistry Research, 2018, 57(12): 4366-4376. |
111 | ALCHEIKHHAMDON Yousif, PINNAU Ingo, HOORFAR Mina, et al. Propylene-propane separation using Zeolitic-Imidazolate Framework (ZIF-8) membranes: Process techno-commercial evaluation[J]. Journal of Membrane Science, 2019, 591: 117252. |
[1] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[2] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[3] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[4] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[5] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[6] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[7] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[8] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[9] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[10] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[11] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[12] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[13] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[14] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[15] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |