Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (7): 3431-3442.DOI: 10.16085/j.issn.1000-6613.2022-2208
• Column: Intelligent chemical equipment and safety • Previous Articles Next Articles
WANG Shuo1,2(), ZHANG Yaxin2,3(), ZHU Botao1,2
Received:
2022-11-29
Revised:
2023-03-17
Online:
2023-08-14
Published:
2023-07-15
Contact:
ZHANG Yaxin
通讯作者:
张亚新
作者简介:
王硕(1996—),男,硕士研究生,研究方向为设备数值模拟与化工过程强化。E-mail:ws18522876700@163.com。
基金资助:
CLC Number:
WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442.
王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2208
预测精度评价 | P | C |
---|---|---|
好 | ≥0.95 | <0.35 |
合格 | >0.80 | <0.50 |
勉强 | >0.70 | <0.65 |
不合格 | ≤0.70 | ≥0.65 |
预测精度评价 | P | C |
---|---|---|
好 | ≥0.95 | <0.35 |
合格 | >0.80 | <0.50 |
勉强 | >0.70 | <0.65 |
不合格 | ≤0.70 | ≥0.65 |
序号 | 服役时间/d | 冲蚀磨损减薄量/mm |
---|---|---|
1 | 30 | 0.2120 |
2 | 60 | 0.5890 |
3 | 90 | 0.7850 |
4 | 120 | 1.3586 |
5 | 150 | 1.5027 |
6 | 180 | 1.6381 |
7 | 210 | 2.1890 |
8 | 240 | 2.3577 |
9 | 270 | 2.6980 |
10 | 300 | 2.8972 |
11 | 330 | 3.0450 |
12 | 360 | 3.4768 |
序号 | 服役时间/d | 冲蚀磨损减薄量/mm |
---|---|---|
1 | 30 | 0.2120 |
2 | 60 | 0.5890 |
3 | 90 | 0.7850 |
4 | 120 | 1.3586 |
5 | 150 | 1.5027 |
6 | 180 | 1.6381 |
7 | 210 | 2.1890 |
8 | 240 | 2.3577 |
9 | 270 | 2.6980 |
10 | 300 | 2.8972 |
11 | 330 | 3.0450 |
12 | 360 | 3.4768 |
时间/d | GM(1,1) | 无偏GM(1,1) | 灰色马尔科夫模型 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
预测值 /mm | 残差 | 相对误差 /% | 平均误差 /% | 预测值 /mm | 残差 | 相对误差 /% | 平均误差 /% | 预测值 /mm | 残差 | 相对误差 /% | 平均误差 /% | |
30 | 0.2120 | 0.0000 | 0.00 | 4.89 | 0.2120 | 0.0000 | 0.00 | 4.05 | 0.2120 | 0.0000 | 0.00 | 0.77 |
60 | 0.6325 | -0.0435 | -7.39 | 0.7291 | -0.1401 | -13.79 | 0.5921 | -0.0031 | -0.49 | |||
90 | 0.8042 | -0.0192 | -2.45 | 0.7962 | -0.0112 | -1.423 | 0.7928 | -0.0078 | -0.97 | |||
120 | 1.3058 | 0.0528 | 3.89 | 1.3125 | 0.0461 | 3.39 | 1.3675 | -0.0089 | -0.69 | |||
150 | 1.4895 | 0.0132 | 0.88 | 1.4975 | 0.0052 | 0.35 | 1.5110 | -0.0083 | -0.55 | |||
180 | 1.6990 | -0.0609 | -3.72 | 1.7340 | -0.0959 | -5.85 | 1.6752 | -0.0371 | -2.18 | |||
210 | 1.9381 | 0.2509 | 11.46 | 2.0175 | 0.1715 | 7.83 | 2.1235 | 0.0655 | 3.38 | |||
240 | 2.2100 | 0.1477 | 6.26 | 2.2500 | 0.1077 | 4.57 | 2.4214 | -0.0637 | -2.88 | |||
270 | 2.5210 | 0.1770 | 6.56 | 2.5450 | 0.1530 | 5.67 | 2.7621 | -0.0641 | -2.54 | |||
300 | 2.8765 | 0.0207 | 0.71 | 2.8837 | 0.0135 | 0.47 | 2.9179 | -0.0207 | -0.72 | |||
330 | 3.2812 | -0.2362 | -7.76 | 3.1462 | -0.1012 | -3.32 | 3.0719 | -0.0269 | -0.82 | |||
360 | 3.7428 | -0.2660 | -7.65 | 3.5430 | -0.0662 | -1.90 | 3.5040 | -0.0272 | -0.73 |
时间/d | GM(1,1) | 无偏GM(1,1) | 灰色马尔科夫模型 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
预测值 /mm | 残差 | 相对误差 /% | 平均误差 /% | 预测值 /mm | 残差 | 相对误差 /% | 平均误差 /% | 预测值 /mm | 残差 | 相对误差 /% | 平均误差 /% | |
30 | 0.2120 | 0.0000 | 0.00 | 4.89 | 0.2120 | 0.0000 | 0.00 | 4.05 | 0.2120 | 0.0000 | 0.00 | 0.77 |
60 | 0.6325 | -0.0435 | -7.39 | 0.7291 | -0.1401 | -13.79 | 0.5921 | -0.0031 | -0.49 | |||
90 | 0.8042 | -0.0192 | -2.45 | 0.7962 | -0.0112 | -1.423 | 0.7928 | -0.0078 | -0.97 | |||
120 | 1.3058 | 0.0528 | 3.89 | 1.3125 | 0.0461 | 3.39 | 1.3675 | -0.0089 | -0.69 | |||
150 | 1.4895 | 0.0132 | 0.88 | 1.4975 | 0.0052 | 0.35 | 1.5110 | -0.0083 | -0.55 | |||
180 | 1.6990 | -0.0609 | -3.72 | 1.7340 | -0.0959 | -5.85 | 1.6752 | -0.0371 | -2.18 | |||
210 | 1.9381 | 0.2509 | 11.46 | 2.0175 | 0.1715 | 7.83 | 2.1235 | 0.0655 | 3.38 | |||
240 | 2.2100 | 0.1477 | 6.26 | 2.2500 | 0.1077 | 4.57 | 2.4214 | -0.0637 | -2.88 | |||
270 | 2.5210 | 0.1770 | 6.56 | 2.5450 | 0.1530 | 5.67 | 2.7621 | -0.0641 | -2.54 | |||
300 | 2.8765 | 0.0207 | 0.71 | 2.8837 | 0.0135 | 0.47 | 2.9179 | -0.0207 | -0.72 | |||
330 | 3.2812 | -0.2362 | -7.76 | 3.1462 | -0.1012 | -3.32 | 3.0719 | -0.0269 | -0.82 | |||
360 | 3.7428 | -0.2660 | -7.65 | 3.5430 | -0.0662 | -1.90 | 3.5040 | -0.0272 | -0.73 |
状态 | 区间分级 | 误差区间 |
---|---|---|
E1 | [MIN, u-s) | [-7.76, -5.87) |
E2 | [u-s, u+0.5s) | [-5.87, 3.03) |
E3 | [u+0.5s, u+s) | [3.03, 6.00) |
E4 | [u+s, MAX) | [6.00, 11.46) |
状态 | 区间分级 | 误差区间 |
---|---|---|
E1 | [MIN, u-s) | [-7.76, -5.87) |
E2 | [u-s, u+0.5s) | [-5.87, 3.03) |
E3 | [u+0.5s, u+s) | [3.03, 6.00) |
E4 | [u+s, MAX) | [6.00, 11.46) |
序号 | 时间 /d | 预测值 /mm·a-1 | 相对误差 /% | 误差状态空间 | 误差符号 |
---|---|---|---|---|---|
1 | 30 | 0.2120 | 0 | E2 | 无 |
2 | 60 | 0.6325 | -7.39 | E1 | + |
3 | 90 | 0.8042 | -2.45 | E2 | + |
4 | 120 | 1.3058 | 3.89 | E3 | - |
5 | 150 | 1.4895 | 0.88 | E2 | - |
6 | 180 | 1.6990 | -3.72 | E2 | + |
7 | 210 | 1.9381 | 11.46 | E4 | - |
8 | 240 | 2.2100 | 6.26 | E4 | - |
9 | 270 | 2.5210 | 6.56 | E4 | - |
10 | 300 | 2.8765 | 0.71 | E2 | - |
11 | 330 | 3.2812 | -7.76 | E1 | + |
12 | 360 | 3.7428 | -7.65 | E1 | + |
序号 | 时间 /d | 预测值 /mm·a-1 | 相对误差 /% | 误差状态空间 | 误差符号 |
---|---|---|---|---|---|
1 | 30 | 0.2120 | 0 | E2 | 无 |
2 | 60 | 0.6325 | -7.39 | E1 | + |
3 | 90 | 0.8042 | -2.45 | E2 | + |
4 | 120 | 1.3058 | 3.89 | E3 | - |
5 | 150 | 1.4895 | 0.88 | E2 | - |
6 | 180 | 1.6990 | -3.72 | E2 | + |
7 | 210 | 1.9381 | 11.46 | E4 | - |
8 | 240 | 2.2100 | 6.26 | E4 | - |
9 | 270 | 2.5210 | 6.56 | E4 | - |
10 | 300 | 2.8765 | 0.71 | E2 | - |
11 | 330 | 3.2812 | -7.76 | E1 | + |
12 | 360 | 3.7428 | -7.65 | E1 | + |
序号 | 状态概率 | 最大概率结果 | |||
---|---|---|---|---|---|
E1 | E2 | E3 | E4 | ||
13 | 0.6667 | 0.3334 | 0 | 0 | E1 |
14 | 0.5778 | 0.2667 | 0.0667 | 0.0667 | E1 |
15 | 0.4900 | 0.3339 | 0.0080 | 0.0969 | E1 |
序号 | 状态概率 | 最大概率结果 | |||
---|---|---|---|---|---|
E1 | E2 | E3 | E4 | ||
13 | 0.6667 | 0.3334 | 0 | 0 | E1 |
14 | 0.5778 | 0.2667 | 0.0667 | 0.0667 | E1 |
15 | 0.4900 | 0.3339 | 0.0080 | 0.0969 | E1 |
服役状态 | 最大减薄量 |
---|---|
轻度冲蚀 | <1mm |
中度冲蚀 | 1~2mm |
重度冲蚀 | 2mm~50%公称壁厚 |
严重冲蚀 | 50%~80%公称壁厚 |
冲蚀穿孔 | >80%公称壁厚 |
服役状态 | 最大减薄量 |
---|---|
轻度冲蚀 | <1mm |
中度冲蚀 | 1~2mm |
重度冲蚀 | 2mm~50%公称壁厚 |
严重冲蚀 | 50%~80%公称壁厚 |
冲蚀穿孔 | >80%公称壁厚 |
编号 | 最大冲蚀位置 | 最大减薄量 /mm | 预测值 相对误差/% | |
---|---|---|---|---|
轴向角度 /(°) | 偏离对称面距离① /mm | |||
1# | 70 | 0 | 5.91 | 6.42 |
2# | 70 | 0 | 5.68 | 1.43 |
3# | 70 | -2.1 | 5.66 | 1.07 |
4# | 72 | -3 | 5.75 | 2.68 |
5# | 70 | 0 | 5.70 | 1.78 |
6# | 70 | -2 | 5.84 | 4.28 |
编号 | 最大冲蚀位置 | 最大减薄量 /mm | 预测值 相对误差/% | |
---|---|---|---|---|
轴向角度 /(°) | 偏离对称面距离① /mm | |||
1# | 70 | 0 | 5.91 | 6.42 |
2# | 70 | 0 | 5.68 | 1.43 |
3# | 70 | -2.1 | 5.66 | 1.07 |
4# | 72 | -3 | 5.75 | 2.68 |
5# | 70 | 0 | 5.70 | 1.78 |
6# | 70 | -2 | 5.84 | 4.28 |
1 | 张玉卓. 中国煤炭液化技术发展前景[J]. 煤炭科学技术, 2006, 34(1): 19-22. |
ZHANG Yuzhuo. Development outlook of China coal liquefaction technology[J]. Coal Science and Technology, 2006, 34(1): 19-22. | |
2 | 任相坤, 房鼎业, 金嘉璐, 等. 煤直接液化技术开发新进展[J]. 化工进展, 2010, 29(2): 198-204. |
REN Xiangkun, FANG Dingye, JIN Jialu, et al. New proceed achieved in the direct coal liquefaction[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 198-204. | |
3 | 孙海疆, 偶国富, 肖定浩, 等. 煤液化多相流输送弯管冲蚀磨损数值研究[J]. 流体机械, 2013, 41(8): 45-47. |
SUN Haijiang, Guofu OU, XIAO Dinghao, et al. Numerical investigation of erosion for multiphase flow elbow in coal liquefaction[J]. Fluid Machinery, 2013, 41(8): 45-47. | |
4 | 张进春, 李昭乾, 牛国庆, 等. 基于“首次穿越模型”的粉煤气化输送管道寿命预测[J]. 煤炭学报, 2021, 46(11): 3699-3706. |
ZHANG Jinchun, LI Zhaoqian, NIU Guoqing, et al. Life prediction of pulverized coal gasification transportation pipeline based on “First Pass Model”[J]. Journal of China Coal Society, 2021, 46(11): 3699-3706. | |
5 | ALLEN C, BALL A. A review of the performance of engineering materials under prevalent tribological and wear situations in South African industries[J]. Tribology International, 1996, 29(2): 105-116. |
6 | 董刚, 张九渊. 固体粒子冲蚀磨损研究进展[J]. 材料科学与工程学报, 2003, 21(2): 307-312. |
DONG Gang, ZHANG Jiuyuan. Developments of research on the solid particle erosion of materials[J]. Journal of Materials Science and Engineering, 2003, 21(2): 307-312. | |
7 | HATTORI S, KISHIMOTO M. Prediction of cavitation erosion on stainless steel components in centrifugal pumps[J]. Wear, 2008, 265(11/12): 1870-1874. |
8 | LIN Nan, LAN Huiqing, XU Yugong, et al. Effect of the gas-solid two-phase flow velocity on elbow erosion[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 581-586. |
9 | 叶福相, 姚军, 刘玉发, 等. 多因素影响下的X80管道钢两相流冲蚀腐蚀特性[J]. 化工进展, 2021, 40(12): 6450-6459. |
YE Fuxiang, YAO Jun, LIU Yufa, et al. Erosion corrosion characteristics of X80 pipeline steel in two-phase flow under the influence of multiple factors[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6450-6459. | |
10 | CAO Xuewen, LI Xingbiao, FAN Yin, et al. Effect of superficial air and water velocities on the erosion of horizontal elbow in slug flow[J]. Powder Technology, 2020, 364: 785-794. |
11 | PENG Wenshan, CAO Xuewen. Numerical prediction of erosion distributions and solid particle trajectories in elbows for gas-solid flow[J]. Journal of Natural Gas Science and Engineering, 2016, 30: 455-470. |
12 | TEIXEIRA A P, GUEDES SOARES C, NETTO T A, et al. Reliability of pipelines with corrosion defects[J]. International Journal of Pressure Vessels and Piping, 2008, 85(4): 228-237. |
13 | CALEYO F, GONZÁLEZ J L, HALLEN J M. A study on the reliability assessment methodology for pipelines with active corrosion defects[J]. International Journal of Pressure Vessels and Piping, 2002, 79(1): 77-86. |
14 | SINGH M, MARKESET T. Simultaneous handling of variability and uncertainty in probabilistic and possibilistic failure analysis of corroded pipes[J]. International Journal of System Assurance Engineering and Management, 2014, 5(1): 43-54. |
15 | 胡群芳, 孙桐, 王飞, 等. 基于贝叶斯的燃气管道腐蚀深度预测方法[J]. 油气储运, 2019, 38(11): 1219-1226. |
HU Qunfang, SUN Tong, WANG Fei, et al. A method for corrosion depth prediction of gas pipeline based on Bayesian estimation[J]. Oil & Gas Storage and Transportation, 2019, 38(11): 1219-1226. | |
16 | 高旭东, 邵永波, 谢丽媛, 等. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130. |
GAO Xudong, SHAO Yongbo, XIE Liyuan, et al. Prediction of fatigue crack propagation of X56 steel submarine pipelines in corrosive environment[J]. Materials Reports, 2020, 34(2): 2123-2130. | |
17 | 骆正山, 陈晨, 王哲. 优化的Gray Markov模型在埋地管道腐蚀速率预测中的应用[J]. 腐蚀与防护, 2019, 40(5): 313-317 |
LUO Zhengshan, CHEN Chen, WANG Zhe. Application of improved gray Markov dynamic model in predicting corrosion rates of oil and gas pipelines[J]. Corrosion & Protection, 2019, 40(5): 313-317. | |
18 | 陈翀, 赵超. 基于AIGA-WLSSVM的埋地管道腐蚀速率预测方法[J]. 管道技术与设备, 2017(3): 34-38. |
CHEN Chong, ZHAO Chao. Prediction model for buried pipeline corrosion rate based on AIGA-WLSSVM[J]. Pipeline Technique and Equipment, 2017(3): 34-38. | |
19 | 刘建国, 姜秀民, 王辉, 等. 流化床内石英砂的热破碎及其灰色预测模型[J]. 化工学报, 2008, 59(2): 328-334. |
LIU Jianguo, JIANG Xiumin, WANG Hui, et al. Thermal fragmentation of quartzite particles in fluidized bed and gray forecasting model[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(2): 328-334. | |
20 | 熊远南. 基于改进灰色-多元回归组合预测模型的燃煤电厂智慧水务研究[J]. 化工进展, 2020, 39(S2): 393-400. |
XIONG Yuannan. Smart water affair of coal-fired power plant based on improved combination prediction model of grey system and regression analysis[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 393-400. | |
21 | 张慧君, 付林, 高炳军. 油煤浆输送管路弯管部位液固两相流流场的数值模拟与磨损预测[J]. 河北工业大学学报, 2010, 39(6): 66-71. |
ZHANG Huijun, FU Lin, GAO Bingjun. Numerical simulation of liquid-solid flows in elbows of coal-oil slurry transporting pipeline and its wear prediction[J]. Journal of Hebei University of Technology, 2010, 39(6): 66-71. | |
22 | 彭文山. 含固体颗粒多相流弯管冲蚀机理研究[D]. 东营: 中国石油大学(华东), 2017. |
PENG Wenshan. Study on the solid particle erosion mechanism of pipe bend for multiphase flow[D]. Dongying: China University of Petroleum (Huadong), 2017. | |
23 | FORDER A, THEW M, HARRISON D. A numerical investigation of solid particle erosion experienced within oilfield control valves[J]. Wear, 1998, 216(2): 184-193. |
24 | XIE Zhenqiang, CAO Xuewen, ZHANG Jun, et al. Effect of cell size on erosion representation and recommended practices in CFD[J]. Powder Technology, 2021, 389: 522-535. |
25 | 程龙慧, 任琼琼, 肖培, 等. 我国常见细菌耐药趋势预测研究:基于灰色GM(1, 1)模型[J]. 中国感染控制杂志, 2022, 21(12): 1164-1170. |
CHENG Longhui, REN Qiongqiong, XIAO Pei, et al. Prediction of drug resistance trends of common bacteria in China based on Grey Prediction Model GM(1, 1)[J]. Chinese Journal of Infection Control, 2022, 21(12): 1164-1170. | |
26 | 卢彬, 冯现大, 鲁瑞. 基于灰色组合模型预测隧道围岩收敛变形[J]. 济南大学学报(自然科学版), 2022, 36(6): 689-695. |
LU Bin, FENG Xianda, LU Rui. Prediction of convergent deformation of tunnel surrounding rocks based on grey combination model[J]. Journal of University of Jinan (Science and Technology), 2022, 36(6): 689-695. | |
27 | 史凯赫, 丁日佳, 吴利丰, 等. 预测空气质量的新型灰色系统多变量模型构建——以石家庄市为例[J]. 系统科学学报, 2023, 31(2): 75-81. |
SHI Kaihe, DING Rijia, WU Lifeng, et al. Construction of a new grey system multivariable model for predicting air quality[J]. Chinese Journal of Systems Science, 2023, 31(2): 75-81. | |
28 | 徐鸿, 邓博, 蒋东方, 等. 基于灰色系统的过热器管壁温度预测模型[J]. 中国机械工程, 2017, 28(22): 2662-2668. |
XU Hong, DENG Bo, JIANG Dongfang, et al. Prediction model of superheater tube wall temperatures based on grey system[J]. China Mechanical Engineering, 2017, 28(22): 2662-2668. | |
29 | 张新生, 曹昕, 韩文超, 等. 基于参数优化GM-Markov模型的海底管道腐蚀预测[J]. 油气储运, 2020, 39(8): 953-960. |
ZHANG Xinsheng, CAO Xin, HAN Wenchao, et al. Prediction of submarine pipeline corrosion based on parameter optimized GM-Markov model[J]. Oil & Gas Storage and Transportation, 2020, 39(8): 953-960. | |
30 | 谢乃明, 张可. 离散灰色预测模型及其应用[M]. 北京: 科学出版社, 2016: 150-156. |
XIE Naiming, ZHANG Ke. Discrete grey prediction model and its application[M]. Beijing: Science Press, 2016: 150-156. | |
31 | 李昊燃, 郑度奎, 程远鹏, 等. 优化的灰色马尔科夫模型在油气集输管道腐蚀预测中的应用[J]. 腐蚀与防护, 2021, 42(5): 42-46. |
LI Haoran, ZHENG Dukui, CHENG Yuanpeng, et al. Application of optimized grey Markov model to corrosion prediction of oil and gas gathering and transmission pipeline[J]. Corrosion & Protection, 2021, 42(5): 42-46. | |
32 | 王庆锋, 雷兴国. 基于无偏灰色马尔可夫链组合模型的管线腐蚀剩余寿命预测[J]. 腐蚀与防护, 2018, 39(2): 136-140. |
WANG Qingfeng, LEI Xingguo. Prediction of residual service life of pipelines based on unbiased grey and Markov chain composite model[J]. Corrosion & Protection, 2018, 39(2): 136-140. | |
33 | 刘思峰. 灰色系统理论及其应用[M]. 8版. 北京: 科学出版社, 2017. |
LIU Sifeng. Grey system theory and its application[M]. 8th ed. Beijing: Science Press, 2017. | |
34 | 俞树荣, 韩竣羽, 李淑欣. 利用灰色马尔可夫模型预测腐蚀管道寿命[J]. 机械强度, 2016, 38(4): 850-856. |
YU Shurong, HAN Junyu, LI Shuxin. Predictive grey Markov chain model for pitting corrosion in piplines[J]. Journal of Mechanical Strength, 2016, 38(4): 850-856. | |
35 | 古江涛, 王增涛, 王世伟, 等. 基于PRGM-Markov链的管道腐蚀动态预测技术[J]. 油气田地面工程, 2022, 41(9): 30-35. |
GU Jiangtao, WANG Zengtao, WANG Shiwei, et al. Dynamic prediction technology of pipeline corrosion based on GM-Markov chain[J]. Oil-Gas Field Surface Engineering, 2022, 41(9): 30-35. |
[1] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[2] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[3] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[4] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[7] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[8] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[9] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[10] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[11] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[12] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[13] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[14] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[15] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |