Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2702-2716.DOI: 10.16085/j.issn.1000-6613.2022-1239
• Resources and environmental engineering • Previous Articles Next Articles
WANG Hao1,2,3(), HUO Jinda2,3, QU Guorui1,2,3, YANG Jiaqi1,2, ZHOU Shiwei1,2,3, LI Bo1,2,3, WEI Yonggang1,2,3()
Received:
2022-07-04
Revised:
2022-08-25
Online:
2023-06-02
Published:
2023-05-10
Contact:
WEI Yonggang
王昊1,2,3(), 霍进达2,3, 曲国瑞1,2,3, 杨家琪1,2, 周世伟1,2,3, 李博1,2,3, 魏永刚1,2,3()
通讯作者:
魏永刚
作者简介:
王昊(1997—),男,硕士研究生,主要研究方向为废旧锂离子电池资源化回收。E-mail:haowang970126@163.com。
基金资助:
CLC Number:
WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716.
王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1239
成分 | 所用材料 | 成本占比/% | 化学特性 | 潜在危害性 |
---|---|---|---|---|
正极材料 | 钴酸锂/锰酸锂/镍酸锂/磷酸铁锂 | 30~35 | 与水、酸、还原剂或强氧化剂发生反应 | 重金属污染 |
负极材料 | 碳材料/石墨 | 10~15 | 遇明火或高温易爆炸 | 粉尘污染 |
电解质 | LiPF6/LiBF4/LiAsF6 | 10~15 | 强腐蚀性,遇水生成HF,氧化产生P2O5等有毒物质 | 氟污染,有害气体污染 |
电解质溶剂 | 碳酸乙烯酯/碳酸二甲酯 | 10~15 | 水解产生醛和酸,燃烧产生CO、CO2等 | 有机物污染 |
隔膜材料 | 聚丙烯/聚乙烯 | 20~30 | 燃烧可产生CO、醛等 | 有机物污染 |
黏合剂 | 聚偏氟乙烯/偏氟乙烯 | 10~15 | 受热分解产生HF | 氟污染 |
成分 | 所用材料 | 成本占比/% | 化学特性 | 潜在危害性 |
---|---|---|---|---|
正极材料 | 钴酸锂/锰酸锂/镍酸锂/磷酸铁锂 | 30~35 | 与水、酸、还原剂或强氧化剂发生反应 | 重金属污染 |
负极材料 | 碳材料/石墨 | 10~15 | 遇明火或高温易爆炸 | 粉尘污染 |
电解质 | LiPF6/LiBF4/LiAsF6 | 10~15 | 强腐蚀性,遇水生成HF,氧化产生P2O5等有毒物质 | 氟污染,有害气体污染 |
电解质溶剂 | 碳酸乙烯酯/碳酸二甲酯 | 10~15 | 水解产生醛和酸,燃烧产生CO、CO2等 | 有机物污染 |
隔膜材料 | 聚丙烯/聚乙烯 | 20~30 | 燃烧可产生CO、醛等 | 有机物污染 |
黏合剂 | 聚偏氟乙烯/偏氟乙烯 | 10~15 | 受热分解产生HF | 氟污染 |
材料 | 钴酸锂电池(LCO) /% | 锰酸锂电池(LMO) /% | 镍、锰、钴三元电池(NMC) /% | 磷酸铁锂电池(LFP) /% | 镍钴铝三元电池(NCA) /% |
---|---|---|---|---|---|
活性正极材料 | 35.3 | 40.8 | 34.7 | 32.7 | 30.6 |
石墨 | 20.9 | 16.8 | 21.7 | 19 | 24.2 |
黏结剂 | 3.0 | 3.0 | 3.0 | 2.7 | 2.9 |
铜 | 16.1 | 15.0 | 15.7 | 13.9 | 16.7 |
铝 | 8.1 | 7.8 | 8.2 | 7.5 | 8.6 |
电解液 | 14.2 | 14.4 | 14.6 | 22.2 | 14.9 |
其他(塑料隔膜) | 2.4 | 2.1 | 2.1 | 1.9 | 2.3 |
材料 | 钴酸锂电池(LCO) /% | 锰酸锂电池(LMO) /% | 镍、锰、钴三元电池(NMC) /% | 磷酸铁锂电池(LFP) /% | 镍钴铝三元电池(NCA) /% |
---|---|---|---|---|---|
活性正极材料 | 35.3 | 40.8 | 34.7 | 32.7 | 30.6 |
石墨 | 20.9 | 16.8 | 21.7 | 19 | 24.2 |
黏结剂 | 3.0 | 3.0 | 3.0 | 2.7 | 2.9 |
铜 | 16.1 | 15.0 | 15.7 | 13.9 | 16.7 |
铝 | 8.1 | 7.8 | 8.2 | 7.5 | 8.6 |
电解液 | 14.2 | 14.4 | 14.6 | 22.2 | 14.9 |
其他(塑料隔膜) | 2.4 | 2.1 | 2.1 | 1.9 | 2.3 |
方法 | 机理 | 优点 | 缺点 | 浸出溶液 | 参考文献 |
---|---|---|---|---|---|
酸浸出 | |||||
无机酸浸出 | 利用溶液的酸特性,氢离子溶解并与电池材料发生反应,使电池材料中的有价金属成分转移到浸出液中 | 浸出速度快、浸出效率高、成本低、适用面广 | 会产生有毒废气以及酸性废水、对设备要求较高 | 盐酸、硫酸、磷酸、硝酸等 | [ |
有机酸浸出 | 更加绿色环保、减少废气和废水的排放 | 浸出不完全、浸出速度慢、有机酸成本较高 | 柠檬酸、抗坏血酸、草酸、苹果酸等 | [ | |
碱浸出 | 利用溶液中强碱性环境下氨根离子与金属离子之间的相互络合作用 | 浸出后不会产生强酸废水、低毒性和高选择性 | 成本较高、浸出速率较慢 | 硫酸铵、碳酸铵、氯化铵、氨水溶液 | [ |
生物浸出 | 通过微生物代谢产生酸,将不溶性金属氧化物转化为可溶金属离子 | 绿色环保无污染 | 浸出效率低、反应过程缓慢、周期长、耗时久 | 硫氧化铁杆菌、黑曲霉等 | [ |
方法 | 机理 | 优点 | 缺点 | 浸出溶液 | 参考文献 |
---|---|---|---|---|---|
酸浸出 | |||||
无机酸浸出 | 利用溶液的酸特性,氢离子溶解并与电池材料发生反应,使电池材料中的有价金属成分转移到浸出液中 | 浸出速度快、浸出效率高、成本低、适用面广 | 会产生有毒废气以及酸性废水、对设备要求较高 | 盐酸、硫酸、磷酸、硝酸等 | [ |
有机酸浸出 | 更加绿色环保、减少废气和废水的排放 | 浸出不完全、浸出速度慢、有机酸成本较高 | 柠檬酸、抗坏血酸、草酸、苹果酸等 | [ | |
碱浸出 | 利用溶液中强碱性环境下氨根离子与金属离子之间的相互络合作用 | 浸出后不会产生强酸废水、低毒性和高选择性 | 成本较高、浸出速率较慢 | 硫酸铵、碳酸铵、氯化铵、氨水溶液 | [ |
生物浸出 | 通过微生物代谢产生酸,将不溶性金属氧化物转化为可溶金属离子 | 绿色环保无污染 | 浸出效率低、反应过程缓慢、周期长、耗时久 | 硫氧化铁杆菌、黑曲霉等 | [ |
种类 | 浸出剂 | 添加剂 | 回收率 | 参考文献 |
---|---|---|---|---|
无机酸浸出 | 4.0mol/L HCl | 4.0% H2O2 | 100% Co、99.99% Ni | [ |
2mol/L H2SO4 | 8.0% H2O2 | 98% Co | [ | |
0.7mol/L H3PO4 | 4.0% H2O2 | 99.7 Co、99.9% Li | [ | |
2.5mol/L H2SO4 | 无 | 97% Li | [ | |
有机酸浸出 | 1.5mol/L C3H6O3 | 5.0% H2O2 | 98.90% Co、97.70% Li | [ |
1.25mol/L C6H8O6 | 无 | 98.50% Co、94.80% Li | [ | |
1.5mol/L C4H6O4 | 4.0% H2O2 | 100% Co、96.% Li | [ | |
1.5mol/L C4H6O4 | 2.0% H2O2 | 93.% Co、99% Li | [ | |
1.5mol/L C4H7NO4 | 4.0% H2O2 | 60.00% Co、Li | [ | |
2.0mol/L C6H8O7 | 1.0% H2O2 | 81.50% Co、92.35% Li | [ | |
1.25mol/L C4H6O6 | 0.9% H2O2 | 99.50% Co、90.20% Li | [ | |
碱浸出 | 1.5mol/L (NH4)2SO4 | 0.5mol/L Na2SO3 | 94.8% Ni、88.4% Co、96.7% Li | [ |
3.1mol/L NH4OH+1.5mol/L NH4HCO3 | 5.0% H2O2 | 99.28% Li、99.63% Ni、99.76% Co | [ | |
1mol/L NH3+0.5mol/L (NH4)2CO3 | 0.5mol/L (NH4)2SO3 | 100% Ni | [ | |
生物浸出 | 硫氧化细菌+铁氧化细菌 | 无 | 80% Co、73% Li | [ |
嗜酸硫氧化菌+铁氧化菌 | 无 | 60% Li、48% Ni、74% Cu、53% Co | [ | |
氧化亚铁硫杆菌+氧化硫杆菌 | 无 | 99% Li、89% Ni、50% Co | [ | |
黑曲霉 | 无 | 100% Li、82% Co | [ |
种类 | 浸出剂 | 添加剂 | 回收率 | 参考文献 |
---|---|---|---|---|
无机酸浸出 | 4.0mol/L HCl | 4.0% H2O2 | 100% Co、99.99% Ni | [ |
2mol/L H2SO4 | 8.0% H2O2 | 98% Co | [ | |
0.7mol/L H3PO4 | 4.0% H2O2 | 99.7 Co、99.9% Li | [ | |
2.5mol/L H2SO4 | 无 | 97% Li | [ | |
有机酸浸出 | 1.5mol/L C3H6O3 | 5.0% H2O2 | 98.90% Co、97.70% Li | [ |
1.25mol/L C6H8O6 | 无 | 98.50% Co、94.80% Li | [ | |
1.5mol/L C4H6O4 | 4.0% H2O2 | 100% Co、96.% Li | [ | |
1.5mol/L C4H6O4 | 2.0% H2O2 | 93.% Co、99% Li | [ | |
1.5mol/L C4H7NO4 | 4.0% H2O2 | 60.00% Co、Li | [ | |
2.0mol/L C6H8O7 | 1.0% H2O2 | 81.50% Co、92.35% Li | [ | |
1.25mol/L C4H6O6 | 0.9% H2O2 | 99.50% Co、90.20% Li | [ | |
碱浸出 | 1.5mol/L (NH4)2SO4 | 0.5mol/L Na2SO3 | 94.8% Ni、88.4% Co、96.7% Li | [ |
3.1mol/L NH4OH+1.5mol/L NH4HCO3 | 5.0% H2O2 | 99.28% Li、99.63% Ni、99.76% Co | [ | |
1mol/L NH3+0.5mol/L (NH4)2CO3 | 0.5mol/L (NH4)2SO3 | 100% Ni | [ | |
生物浸出 | 硫氧化细菌+铁氧化细菌 | 无 | 80% Co、73% Li | [ |
嗜酸硫氧化菌+铁氧化菌 | 无 | 60% Li、48% Ni、74% Cu、53% Co | [ | |
氧化亚铁硫杆菌+氧化硫杆菌 | 无 | 99% Li、89% Ni、50% Co | [ | |
黑曲霉 | 无 | 100% Li、82% Co | [ |
1 | 刘彦龙. 中国锂离子电池产业发展现状及市场发展趋势[J]. 电源技术, 2019, 43(2): 181-187. |
LIU Yanlong. Development status and market trend of China’s lithium-ion battery industry[J]. Chinese Journal of Power Sources, 2019, 43(2): 181-187. | |
2 | NATARAJAN Subramanian, ARAVINDAN Vanchiappan. Burgeoning prospects of spent lithium-ion batteries in multifarious applications[J]. Advanced Energy Materials, 2018, 8(33): 1802303. |
3 | SUN Jie, LI Jigang, ZHOU Tian, et al. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery[J]. Nano Energy, 2016, 27: 313-319. |
4 | ZAGHIB K, DONTIGNY M, GUERFI A, et al. Safe and fast-charging Li-ion battery with long shelf life for power applications[J]. Journal of Power Sources, 2011, 196(8): 3949-3954. |
5 | LIU Xianming, LIU Guoping. Study of a lithium battery automatic shell control system algorithm[J]. Applied Mechanics and Materials, 2015, 738/739: 1039-1047. |
6 | JIANG Yong, LU Cai, LIU Xing, et al. Lithium acetate modified PU/graphene composites as separator for advanced Li-ion batteries[J]. Micro & Nano Letters, 2020, 15(4): 213-217. |
7 | 唐子威, 侯旭, 裴波, 等. 锂离子电池电解液研究进展[J]. 船电技术, 2017, 37(6): 14-15, 19. |
TANG Ziwei, HOU Xu, PEI Bo, et al. Research progress of the electrolyte for lithium-ion battery[J]. Marine Electric & Electronic Engineering, 2017, 37(6): 14-15, 19. | |
8 | 梁波, 陈栩, 张帅. 水溶性羧甲基壳聚糖粘结剂在锂离子电池石墨负极中的应用[J]. 中国有色金属学报, 2018, 28(7): 1379-1386. |
LIANG Bo, CHEN Xu, ZHANG Shuai. Application of water-soluble carboxymethyl chitosan as binder in graphite anode of lithium-ion battery[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7): 1379-1386. | |
9 | RABAH M A, FARGHALY F E, ABD-EL MOTALEB M A. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries[J]. Waste Management, 2008, 28(7): 1159-1167. |
10 | 孙杰, 李吉刚, 党胜男, 等. 锂离子电池及其材料热失控毒物研究[J]. 储能科学与技术, 2015, 4(6): 609-615. |
SUN Jie, LI Jigang, DANG Shengnan, et al. Research of toxic productions from thermal runaway processes of Li-ion battery and materials[J]. Energy Storage Science and Technology, 2015, 4(6): 609-615. | |
11 | 李洪枚, 姜亢. 废旧锂离子电池对环境污染的分析与对策[J]. 上海环境科学, 2004(5): 201-203, 230. |
LI Hongmei, JIANG Kang. An analysis of waste lithium-ion battery contamination to environment and its countermeasures[J]. Shanghai Environmental Sciences, 2004(5): 201-203, 230. | |
12 | 朱景和, 陈新林, 马忠臣. 赞比亚某铜钴硫化矿浮选工艺研究[J]. 有色矿冶, 2014, 30(2): 13-17. |
ZHU Jinghe, CHEN Xinlin, MA Zhongchen. A flotation process for a copper-cobalt sulfide ore from Zambia[J]. Non-Ferrous Mining and Metallurgy, 2014, 30(2): 13-17. | |
13 | GRATZ Eric, Qina SA, APELIAN Diran, et al. A closed loop process for recycling spent lithium ion batteries[J]. Journal of Power Sources, 2014, 262: 255-262. |
14 | QU Guorui, WEI Yonggang, LIU Cuiping, et al. Efficient separation and recovery of lithium through volatilization in the recycling process of spent lithium-ion batteries[J]. Waste Management, 2022, 150: 66-74. |
15 | Hayder ALI, KHAN Hassan A, PECHT Michael G. Circular economy of Li batteries: Technologies and trends[J]. Journal of Energy Storage, 2021, 40: 102690. |
16 | WANG Qingsong, JIANG Lihua, YU Yan, et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect[J]. Nano Energy, 2019, 55: 93-114. |
17 | CARDARELLI F, DUBE J. Method for recycling spent lithium metal polymer rechargeable batteries and related materials: US07192564B2[P]. 2007-03-20. |
18 | HUA Yang, ZHOU Sida, HUANG Yi, et al. Sustainable value chain of retired lithium-ion batteries for electric vehicles[J]. Journal of Power Sources, 2020, 478: 228753. |
19 | OJANEN Severi, Mari LUNDSTRÖM, Annukka SANTASALO-AARNIO, et al. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling[J]. Waste Management, 2018, 76: 242-249. |
20 | James SHAW-STEWART, Anna ALVAREZ-REGUERA, GRESZTA Agata, et al. Aqueous solution discharge of cylindrical lithium-ion cells[J]. Sustainable Materials and Technologies, 2019, 22: e00110. |
21 | ZHANG Tao, HE Yaqun, GE Linhan, et al. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries[J]. Journal of Power Sources, 2013, 240: 766-771. |
22 | KIM Seoa, BANG Jaeyeon, YOO Junsang, et al. A comprehensive review on the pretreatment process in lithium-ion battery recycling[J]. Journal of Cleaner Production, 2021, 294: 126329. |
23 | LI Jia, WANG Guangxu, XU Zhenming. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries[J]. Waste Management, 2016, 52: 221-227. |
24 | 齐婷. 废旧锂离子电池的放电特性与电极材料的无氧焙烧还原回收[D]. 上海: 上海交通大学, 2017. |
QI Ting. Discharge properties of waste lithium ion batteries and oxygen-free roasting to recycle electrode materials[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
25 | 宋秀玲, 戴书琪, 徐永胜, 等. 废旧锂离子电池放电的实验研究[J]. 应用化工, 2015, 44(4): 594-597. |
SONG Xiuling, DAI Shuqi, XU Yongsheng, et al. Experimental study on the discharge of the waste lithium ion battery[J]. Applied Chemical Industry, 2015, 44(4): 594-597. | |
26 | XIAO Jiefeng, GUO Jie, ZHAN Lu, et al. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions[J]. Journal of Cleaner Production, 2020, 255: 120064. |
27 | YAO Linpeng, ZENG Qi, QI Ting, et al. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries[J]. Journal of Cleaner Production, 2020, 245: 118820. |
28 | 苏勇, 卢世杰, 周宏喜, 等. 废旧动力锂离子电池安全放电研究[J]. 中国资源综合利用, 2020, 38(10): 40-42, 52. |
SU Yong, LU Shijie, ZHOU Hongxi, et al. Research on the safe discharge of waste power lithium-ion battery[J]. China Resources Comprehensive Utilization, 2020, 38(10): 40-42, 52. | |
29 | 谢英豪, 欧彦楠, 余海军, 等. 废旧车用动力电池安全放电研究[J]. 工业安全与环保, 2017, 43(9): 44-47. |
XIE Yinghao, Yannan OU, YU Haijun, et al. Research on safe discharge for used EV traction battery[J]. Industrial Safety and Environmental Protection, 2017, 43(9): 44-47. | |
30 | ROUHI Hassan, KAROLA Eero, Rodrigo SERNA-GUERRERO, et al. Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes[J]. Journal of Energy Storage, 2021, 35: 102323. |
31 | WANG Hao, QU Guorui, YANG Jiaqi, et al. An effective and cleaner discharge method of spent lithium batteries[J]. Journal of Energy Storage, 2022, 54: 105383. |
32 | XUAN Wen, OTSUKI Akira, CHAGNES Alexandre. Investigation of the leaching mechanism of NMC 811 (LiNi0.8Mn0.1Co0.1O2) by hydrochloric acid for recycling lithium ion battery cathodes[J]. RSC Advances, 2019, 9(66): 38612-38618. |
33 | LI Dongmin, ZHANG Bao, YE Long, et al. Regeneration of high-performance Li1.2Mn0.54Ni0.13Co0.13O2 cathode material from mixed spent lithium-ion batteries through selective ammonia leaching[J]. Journal of Cleaner Production, 2022, 349: 131373. |
34 | MOAZZAM Parisa, BOROUMAND Yasaman, RABIEI Parisa, et al. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries[J]. Chemosphere, 2021, 277: 130196. |
35 | SETHURAJAN Manivannan, GAYDARDZHIEV Stoyan. Bioprocessing of spent lithium ion batteries for critical metals recovery—A review[J]. Resources, Conservation and Recycling, 2021, 165: 105225. |
36 | GUO Yang, LI Feng, ZHU Haochen, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Management, 2016, 51: 227-233. |
37 | XU Meiling, KANG Shumei, JIANG Feng, et al. A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid[J]. RSC Advances, 2021, 11(44): 27689-27700. |
38 | KU Heesuk, JUNG Yeojin, Minsang JO, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching[J]. Journal of Hazardous Materials, 2016, 313: 138-146. |
39 | ROY Joseph Jegan, CAO Bin, MADHAVI Srinivasan. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach[J]. Chemosphere, 2021, 282: 130944. |
40 | SWAIN Basudev, JEONG Jinki, LEE Jae chun, et al. Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries[J]. Journal of Power Sources, 2007, 167(2): 536-544. |
41 | CHEN Weisheng, Hsing Jung HO. Recovery of valuable metals from lithium-ion batteries NMC cathode waste materials by hydrometallurgical methods[J]. Metals, 2018, 8(5): 321. |
42 | CHEN Xiangping, CHEN Yongbin, ZHOU Tao, et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries[J]. Waste Management, 2015, 38: 349-356. |
43 | PRASETYO Erik, MURYANTA Widya Aryani, ANGGRAINI Astria Gesta, et al. Tannic acid as a novel and green leaching reagent for cobalt and lithium recycling from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management, 2022, 24(3): 927-938. |
44 | QI Yaping, MENG Fansong, YI Xiaoxia, et al. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries[J]. Journal of Cleaner Production, 2020, 251: 119665. |
45 | WANG Shubin, WANG Chao, LAI Fengjiao, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts[J]. Waste Management, 2020, 102: 122-130. |
46 | ZHENG Xiaohong, GAO Wenfang, ZHANG Xihua, et al. Spent lithium-ion battery recycling—Reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-688. |
47 | WINSLOW Kevin M, LAUX Steven J, TOWNSEND Timothy G. A review on the growing concern and potential management strategies of waste lithium-ion batteries[J]. Resources, Conservation and Recycling, 2018, 129: 263-277. |
48 | BISWAL Basanta Kumar, JADHAV Umesh U, MADHAIYAN Munusamy, et al. Biological leaching and chemical precipitation methods for recovery of Co and Li from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 12343-12352. |
49 | HEYDARIAN Ahmad, MOUSAVI Seyyed Mohammad, VAKILCHAP Farzane, et al. Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries[J]. Journal of Power Sources, 2018, 378: 19-30. |
50 | GUZOLU Jafar Sharrivar, GHARABAGHI Mahdi, MOBIN Mohammad, et al. Extraction of Li and Co from Li-ion batteries by chemical methods[J]. Journal of the Institution of Engineers: Series D, 2017, 98(1): 43-48. |
51 | PENG Chao, HAMUYUNI Joseph, WILSON Benjamin P, et al. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system[J]. Waste Management, 2018, 76: 582-590. |
52 | TYLER Or, W D Gourley STORM, KARTHIKEYAN Kaliyappan, et al. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook[J]. Carbon Energy, 2020, 2: 6-43. |
53 | FAN Bailin, CHEN Xiangping, ZHOU Tao, et al. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2016, 34(5): 474-481. |
54 | ZHENG Y, LONG H, ZHOU L, et al. Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant[J]. International Journal of Environmental Research, 2016, 10: 159-168. |
55 | NAYAKA G P, PAI K V, SANTHOSH G, et al. Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co[J]. Hydrometallurgy, 2016, 161: 54-57. |
56 | SUN Conghao, XU Liping, CHEN Xiangping, et al. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect[J]. Waste Management & Research, 2018, 36(2): 113-120. |
57 | ZENG Xianlai, LI Jinhui, SHEN Bingyu. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid[J]. Journal of Hazardous Materials, 2015, 295: 112-118. |
58 | LI Li, LU Jun, REN Yang, et al. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2012, 218: 21-27. |
59 | REFLY S, FLOWERI O, MAYANGSARI T R, et al. Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes[J]. ACS Sustainable Chemistry & Engineering, 2020(8): 16104-16114. |
60 | BARIK S P, PRABAHARAN G, KUMAR L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study[J]. Journal of Cleaner Production, 2017, 147: 37-43. |
61 | YI Aifei, ZHU Zhaowu, LIU Yahui, et al. Using highly concentrated chloride solutions to leach valuable metals from cathode-active materials in spent lithium-ion batteries[J]. Rare Metals, 2021, 40(7): 1971-1978. |
62 | GUIMARÃES L F, BOTELHO A B, ESPINOSA D C R. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent[J]. Minerals Engineering, 2022, 183: 107597. |
63 | CHEN Xiangping, MA Hongrui, LUO Chuanbao, et al. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid[J]. Journal of Hazardous Materials, 2017, 326: 77-86. |
64 | FU Yuanpeng, HE Yaqun, CHEN Hangchao, et al. Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 154-162. |
65 | YANG Jingbo, FAN Ersha, LIN Jiao, et al. Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching[J]. ACS Applied Energy Materials, 2021, 4(6): 6261-6268. |
66 | ISLAM Aminul, AHMED Tofayal, AWUAL Md Rabiul, et al. Advances in sustainable approaches to recover metals from e-waste—A review[J]. Journal of Cleaner Production, 2020, 244: 118815. |
67 | Nazanin BAHALOO-HOREH, MOUSAVI Seyyed Mohammad, BANIASADI Mahsa. Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries[J]. Journal of Cleaner Production, 2018, 197: 1546-1557. |
68 | WU Weijin, LIU Xiaocui, ZHANG Xu, et al. Mechanism underlying the bioleaching process of LiCoO2 by sulfur-oxidizing and iron-oxidizing bacteria[J]. Journal of Bioscience and Bioengineering, 2019, 128(3): 344-354. |
69 | Nazanin BAHALOO-HOREH, MOUSAVI Seyyed Mohammad. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger [J]. Waste Management, 2017, 60: 666-679. |
70 | JOULIÉ M, LAUCOURNET R, BILLY E. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 551-555. |
71 | BERTUOL Daniel A, MACHADO Caroline M, SILVA Mariana L, et al. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction[J]. Waste Management, 2016, 51: 245-251. |
72 | ZHENG Rujuan, ZHAO Li, WANG Wenhui, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. |
73 | LI Li, FAN Ersha, GUAN Yibiao, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233. |
74 | LI Li, QU Wenjie, ZHANG Xiaoxiao, et al. Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. Journal of Power Sources, 2015, 282: 544-551. |
75 | LI Li, DUNN Jennifer B, ZHANG Xiao xiao, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment[J]. Journal of Power Sources, 2013, 233: 180-189. |
76 | GOLMOHAMMADZADEH Rabeeh, RASHCHI Fereshteh, VAHIDI Ehsan. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: process optimization and kinetic aspects[J]. Waste Management, 2017, 64: 244-254. |
77 | ZHENG Xiaohong, GAO Wenfang, ZHANG Xinhua, et al. Spent lithium-ion battery recycling—Reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-688. |
78 | XIN Baoping, ZHANG Di, ZHANG Xian, et al. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria[J]. Bioresource Technology, 2009, 100(24): 6163-6169. |
79 | BOXALL Naomi J, CHENG Ka Yu, BRUCKARD Warren, et al. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries[J]. Journal of Hazardous Materials, 2018, 360: 504-511. |
80 | TRAN Thanh Tuan, MOON Hyun Seung, LEE Man Seung. Recovery of valuable metals from the hydrochloric leaching solution of reduction smelted metallic alloys from spent lithium-ion batteries[J]. Journal of Chemical Technology & Biotechnology, 2022, 97(5): 1247-1258. |
81 | QU Xin, XIE Hongwei, CHEN Xiang, et al. Recovery of LiCoO2 from spent lithium-ion batteries through a low-temperature ammonium chloride roasting approach: Thermodynamics and reaction mechanisms[J]. ACS Sustainable Chemistry & Engineering, 2020(8): 6524-6532. |
82 | HUANG Yong, SHAO Penghui, YANG Liming, et al. Thermochemically driven crystal phase transfer via chlorination roasting toward the selective extraction of lithium from spent LiNi1/3Co1/3Mn1/3O2 [J]. Resources, Conservation and Recycling, 2021, 174: 105757. |
83 | YUAN Wenhui, QIU Dingfan, WAN Chengyan. Co-Cu-Fe alloy recycled from spent lithium ion batteries by reducing smelting process[J]. 2010, 26(4): 455-458. |
84 | REN Guoxing, XIAO Songwen, XIE Meiqiu, et al. Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO-SiO2-Al2O3 slag system[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(2): 450-456. |
85 | XIAO Songwen, REN Guoxing, XIE Meiqiu, et al. Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3 slag system[J]. Journal of Sustainable Metallurgy, 2017, 3: 703-710. |
86 | DANG Hui, LI Na, CHANG Zhidong, et al. Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery[J]. Separation and Purification Technology, 2020, 233: 116025. |
87 | WANG Dahui, ZHANG Xiaodong, CHEN Huaijing, et al. Separation of Li and Co from the active mass of spent Li-ion batteries by selective sulfating roasting with sodium bisulfate and water leaching[J]. Minerals Engineering, 2018, 126: 28-35. |
88 | LIN Jiao, LIU Chunwei, CAO Hongbin, et al. Environmentally benign process for selective recovery of valuable metals from spent lithium-ion batteries by using conventional sulfation roasting[J]. Green Chemistry, 2019, 21(21): 5904-5913. |
89 | TANG Yiqi, QU Xin, ZHANG Beilei, et al. Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach[J]. Journal of Cleaner Production, 2021, 279: 123633. |
90 | XIAO Jiefeng, NIU Bo, SONG Qingming, et al. Novel targetedly extracting lithium: An environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery[J]. Journal of Hazardous Materials, 2021, 404: 123947. |
91 | LI Jia, WANG Guangxu, XU Zhenming. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries[J]. Journal of Hazardous Materials, 2016, 302: 97-104. |
92 | ZHOU Fengyin, QU Xin, WU Yongxin, et al. Vacuum pyrolysis of pine sawdust to recover spent lithium ion batteries: The synergistic effect of carbothermic reduction and pyrolysis gas reduction[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(3): 1287-1297. |
93 | PINEGAR Haruka, MARTHI Rajashekhar, YANG Peilin, et al. Reductive thermal treatment of LiCoO2 from end-of-life lithium-ion batteries with hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(22): 7447-7453. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[3] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
[4] | WANG Yue, ZHENG Xiaohong, TAO Tianyi, LIU Xiuqing, LI Li, SUN Zhi. Review on selective recovery of lithium from cathode materials in spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4530-4543. |
[5] | DUAN Manhua, CHENG Dan, XIAO Wei, YANG Zhanxu. Preparation and performance of polyacrylonitrile/polyester nowoven microporous composite separator for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2615-2622. |
[6] | GONG Xin, LIU Xiaodong, WEN Fushan, SHI Nan, LIU Dong. Preparation and electrochemical performance of mesocarbon microbeads derived from emulsion-polymerization method [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2379-2388. |
[7] | QIU Zhiwen, WU Aimin, WANG Jie, HUANG Hao. Research progress of Si-based anode materials for Li-ion battery [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 253-269. |
[8] | ZOU Wenhong, FAN You, ZHANG Yanyan, BAI Zhengshuai, TANG Yuxin. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044. |
[9] | YU Minghao, GU Mengxuan, WU Zhengying, SUN Linbing. Advances in the synthesis and application of manganese oxides as anode materials for lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5012-5028. |
[10] | ZHU Sheng, PENG Yiting, MIN Yulin, LIU Haimei, XU Qunjie. Research progress on materials and technologies for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4837-4852. |
[11] | CHEN Meng, LI Jingjing. Experiment on heat dissipation performance of electric vehicle lithium battery based on pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3163-3171. |
[12] | ZHANG Wenlin, LIU Xuejiao, MA Qingcha, YANG Shuangcheng, ZHANG Yongkang, LI Chunli. Application of NCM electrolyte for nickel-rich lithium ion battery [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2175-2187. |
[13] | LI Yongjia, WEI Ruihong, LU Jinhua, YAO Yaochun. Preparation and performance of FePO4 precursor for LiFePO4 [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2227-2233. |
[14] | Zhongliang XIAO,Chengfeng ZHOU,Liubin SONG,Zhong CAO,Peng JIANG. Research progress of ternary material NCM for nickel-rich lithium ion battery [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 216-223. |
[15] | Fengrong WANG,Kecun MA,Tiancheng WANG,Longdi DU,Guiyue GUO. Treatment of ethylene waste lye by precipitation-oxidation [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3896-3901. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |