Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (1): 216-223.DOI: 10.16085/j.issn.1000-6613.2019-0760
• Materials science and technology • Previous Articles Next Articles
Zhongliang XIAO(),Chengfeng ZHOU,Liubin SONG(),Zhong CAO,Peng JIANG
Received:
2019-05-09
Online:
2020-01-14
Published:
2020-01-05
Contact:
Liubin SONG
通讯作者:
宋刘斌
作者简介:
肖忠良(1964—),男,博士,教授,研究方向为冶金材料物理化学、电子化学品、能源材料电化学和计算机化学、冶金化工过程的模拟。E-mail:基金资助:
CLC Number:
Zhongliang XIAO,Chengfeng ZHOU,Liubin SONG,Zhong CAO,Peng JIANG. Research progress of ternary material NCM for nickel-rich lithium ion battery[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 216-223.
肖忠良,周乘风,宋刘斌,曹忠,蒋鹏. 富镍锂离子电池三元材料NCM的研究进展[J]. 化工进展, 2020, 39(1): 216-223.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0760
1 | LEE S M, OH S H, AHN J P, et al . Electrochemical properties of ZrO2-coated LiNi0.8Co0.2O2 cathode materials[J]. Journal of Power Sources, 2006, 159(2): 1334-1339. |
2 | 唐昌平, 应皆荣, 雷敏, 等 . 控制结晶-微波碳热还原法制备高密度LiFePO4/C[J]. 电化学, 2006, 12(2): 188-190. |
TANG C P , YING J R , LEI M , et al . High density LiFePO4/C synthesized by controlled crystallization and microwave carbon thermal reduction[J]. Electrochemistry, 2006, 12(2): 188-190. | |
3 | 赖飞燕 . 尖晶石型锰系锂离子电池正极材料表面包覆及其应用研究[D]. 桂林: 广西师范大学, 2018. |
LAI F Y . Study on surface coating and application of spinel Mn-based cathode materials for lithium-ion batteries[D]. Guilin: Guangxi Normal University,2018. | |
4 | 袁晶 . 锂离子电池正极材料LiNi0 . 6Co0.2Mn 0 .2O 2的合成与改性[D]. 合肥: 合肥工业大学, 2017. |
YUAN J . Synthesis and modification of LiNi0 . 6Co0.2Mn 0 .2O 2 as a cathode material for lithium-ion batteries[D]. Hefei: Hefei University of Technology, 2017. | |
5 | 吕庆文 . 高容量镍基正极材料LiNi0 . 9Mn0.1O 2的合成及改性研究[D]. 赣州: 江西理工大学, 2017. |
LÜ Q W . Synthesis and modification of high capacity nickel based cathode material LiNi0 . 9Mn0.1O 2 [D].Ganzhou: Jiangxi University of Science and Technology, 2017. | |
6 | 宋刘斌, 李新宇, 肖忠良, 等 . 锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2研究进展[J]. 功能材料, 2017, 48(12):12023-12029, 12035. |
SONG L B , LI X Y , XIAO Z L , et al . Research progress of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries[J]. Journal of Functional Materials, 2017, 48(12):12023-12029, 12035. | |
7 | PISTOIA G . Lithium-ion batteries: advances and applications[M].New South Wales: Newnes, 2013: 34-214. |
8 | YUAN J , LIU X , ZHANG H .Lithium-ion batteries: advanced materials and technologies[M]. Boca Raton: CRC Press, 2011: 11-145. |
9 | GOONETILLEKE D , SHARMA N , PANG W K , et al . Structural evolution and high-voltage structural stability of Li(Ni x Mn y Co z )O2 electrodes[J]. Chemistry of Materials, 2019, 31(2): 376-386. |
10 | LIU S , WU H , HUANG L , et al . Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2016, 674: 447-454. |
11 | LI L J , CHEN Z Y , ZHANG Q B , et al . A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(2): 894-904. |
12 | RONG H , XU M , XIE B , et al . Performance improvement of graphite/LiNi0.4Co0.2Mn0.4O2 battery at high voltage with added tris (trimethylsilyl) phosphate[J]. Journal of Power Sources, 2015, 274: 1155-1161. |
13 | LV C , PENG Y , YANG J , et al . Electrospun Nb-doped LiNi0.4Co0.2Mn0.4O2 nanobelts for lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2018, 5(5): 1126-1132. |
14 | CHEN Z , KIM G T , CHAO D , et al . Toward greener lithium-ion batteries: aqueous binder-based LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance[J]. Journal of Power Sources, 2017, 372: 180-187. |
15 | MIZUNO Y , ZETTSU N , YUBUTA K , et al . Fabrication of LiCoO2 crystal layers using a flux method and their application for additive-free lithium-ion rechargeable battery cathodes, cryst[J]. Growth Des., 2014, 14: 1882-1887. |
16 | ZETTSU N , NISHIKAWA K , YUBUTA K , et al . Flux growth of hexagonal cylindrical LiCoO2 crystals surrounded by Li-ion conducting preferential facets and their electrochemical properties studied by single-particle measurements[J]. Mater. Chem. A, 2015, 3: 17016-17021. |
17 | SATYANARAYANA M , JAMES J , VARADARAJU U V . Electrochemical performance of LiNi0.4Co0.2Mn0.4O2 prepared by different molten salt flux: LiNO3-LiCl and LiNO3-KNO3 [J]. Applied Surface Science, 2017, 418: 72-78. |
18 | HILDEBRAND S , RHEINFELD A , FRIESEN A , et al . Thermal analysis of LiNi0.4Co0.2Mn0.4O2/mesocarbon microbeads cells and electrodes: state-of-charge and state-of-health influences on reaction kinetics[J]. Journal of the Electrochemical Society, 2018, 165(2): A104-A117. |
19 | CHO Y H, JANG D , YOON J , et al . Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction[J]. Journal of Alloys and Compounds, 2013, 562: 219-223. |
20 | BöRNER M , HORSTHEMKE F , KOLLMER F , et al . Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes[J]. Journal of Power Sources, 2016, 335: 45-55. |
21 | KIM N Y , YIM T, SONG J H , et al . Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy[J]. Journal of Power Sources, 2016, 307: 641-648. |
22 | AURBACH D , SRUR-LAVI O , GHANTY C , et al . Studies of aluminum-doped LiNi0.5Co0.2Mn0.3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics[J]. Journal of the Electrochemical Society, 2015, 162(6): A1014-A1027. |
23 | DIXIT M , KOSA M , LAVI O S , et al . Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles[J]. Physical Chemistry Chemical Physics, 2016, 18(9): 6799-6812. |
24 | 郑卓, 吴振国, 向伟, 等 . 高倍率球形锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2 的制备及其电化学性能研究[J]. 化学学报, 2017, 75(5): 501-507. |
ZHENG Z , WU Z G , XIANG W , et al . Preparation and electrochemical performance of high rate spherical layered LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ion batteries[J]. Acta Chimica Sinica, 2017, 75(5): 501-507. | |
25 | WANG L C , LI L , ZHANG X X , et al . Compound-hierarchical-sphere LiNi0.5Co0.2Mn0.3O2: synthesis, structure, and electrochemical characterization[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32120-32127. |
26 | YUE P , WANG Z , LI X , et al . The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution[J]. Electrochimica Acta, 2013, 95: 112-118. |
27 | LIANG L , DU K , LU W , et al . Synthesis and characterization of concentration-gradient LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2014, 613: 296-305. |
28 | LEE Y S, SHIN W K , KANNAN A G , et al . Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer[J]. ACS Appl. Mater. Interfaces, 2015, 7(25): 13944-13951. |
29 | RAZMJOO K M A , PAKNAHAD P , GHORBANZADEH M . Improvement of the electrochemical performance of nickel rich LiNi0.5Co0.2Mn0.3O2 cathode material by reduced graphene oxide/SiO2 nanoparticles double-layer coating[J]. New Journal of Chemistry, 2019, 43: 2766-2775. |
30 | GAO H , CAI J , XU J L , et al . Surface modification for suppressing interfacial parasitic reactions of a nickel-rich lithium-ion cathode[J]. Chemistry of Materials, 2019, 31(8): 2723-2730. |
31 | HUANG Z , WANG Z , ZHENG X , et al . Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Electrochimica Acta, 2015, 182: 795-802. |
32 | HUANG Z , WANG Z , JING Q , et al . Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material[J]. Electrochimica Acta, 2016, 192: 120-126. |
33 | DAI S , YUAN M , WANG L , et al . Ultrathin-Y2O3-coated LiNi0.8Co0.1Mn0.1O2 as cathode materials for Li-ion batteries: synthesis, performance and reversibility[J]. Ceramics International, 2019, 45(1): 674-680. |
34 | JOE Y C, PRASANNA K , KANG S H , et al . Preparation and characterization of the LiNi0.8Co0.1Mn0.1O2 cathode active material by electrophoretic deposition[J]. Nanosci. Nanotechnol., 2018, 18(9): 6494-6498. |
35 | HEO K, LEE J S, KIM H S , et al . Ionic conductor-LiNi0.8Co0.1Mn0.1O2 composite synthesized by simultaneous Co-precipitation for use in lithium ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(13): A2955-A2960. |
36 | LI Q , DANG R , CHEN M , et al . Synthesis method for long cycle life lithium-ion cathode material: nickel-rich core-shell LiNi0.8Co0.1Mn0.1O2 [J]. ACS Appl. Mater. Interfaces, 2018, 10(21): 17850-17860. |
37 | GAO S , CHENG Y T , SHIRPOUR M . Effects of cobalt deficiency on nickel-rich layered LiNi0.8Co0.1Mn0.1O2 positive electrode materials for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(1): 982-989. |
38 | LI W D , ASL H Y, XIE Q , et al . Collapse of LiNi1- x - y Co x Mn y O2 lattice at deep charge irrespective of nickel content in lithium-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(13): 5097-5101. |
39 | XI Y , LIU Y , ZHANG D , et al . Comparative study of the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 and LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries[J]. Solid State Ionics, 2018, 327: 27-31. |
40 | IQBAL A , CHEN L , CHEN Y , et al . Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(12): 1473-1481. |
41 | XIAO Z , HU C , SONG L , et al . Modification research of LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium-ion battery[J]. Ionics, 2017, 24(1): 91-98. |
42 | GAN Q M , QIN N , ZHU Y H , et al . Polyvinylpyrrolidone-induced uniform surface conductive polymers coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (13): 12594-12604. |
43 | SONN L B , LIU J , XIAO Z L , et al . Thermoeletrochemical study on LiNi0.8Co0.1Mn0.1O2 with in situ modification of Li2ZrO3 [J]. Ionics, 2018, 24(11): 3325-3335. |
44 | 吕艳卓, 王霄鹤, 刘建武, 等 . LiNi0.4Co0.2Mn0.4O2与LiMn2O4共混正极材料电化学性能[J]. 哈尔滨工业大学学报, 2016, 48(8): 161-165, 170. |
LV Y Z , WANG X H , LIU J W , et al . Electrochemical performances of the co-mixed LiNi0.4Co0.2Mn0.4O2 and LiMn2O4 as the positive-electrode material of lithium ion battery[J]. Journal of Harbin Institute of Technology, 2016, 48(8): 161-165, 170. | |
45 | 王靖, 柯少勇, 黄贤坤, 等 . 锂离子电池电极颗粒分布对电化学性能影响的分析[J]. 化工进展, 2018, 37(7): 2620-2626. |
WANG J , KE S Y , HUANG X K , et al . Analysis of the effects of electrode particle size distribution on the electrochemical performances of lithium ion battery[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2620-2626. | |
46 | 陈珑, 孙晓刚, 邱治文, 等 . 碳纳米管增强三元材料的电化学性能[J]. 化工进展, 2017, 36(12): 4533-4539. |
CHEN L , SUN X G , QIU Z W , et al . Enhancement of electrochemical performance of ternary material by using carbon nanotube as conductive additive[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4533-4539. | |
47 | LEIFER N , MATLAHOV I , ERICKSON E M , et al . Ammonia treatment of 0.35Li2MnO3·0.65LiNi0.35Mn0.45Co0.20O2 material: insights from solid-state NMR analysis[J]. The Journal of Physical Chemistry C, 2018, 122(7): 3773-3779. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[3] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[4] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[5] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[6] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[7] | WANG Peng, ZHANG Yang, FAN Bingqiang, HE Dengbo, SHEN Changshuai, ZHANG Hedong, ZHENG Shili, ZOU Xing. Process and kinetics of hydrochloric acid leaching of high-carbon ferrochromium [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 510-517. |
[8] | DONG Jiayu, WANG Simin. Experimental on ultrasound enhancement of para-xylene crystallization characteristics and regulation mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4504-4513. |
[9] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[10] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[11] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[12] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[13] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[14] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[15] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |