Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (1): 216-223.DOI: 10.16085/j.issn.1000-6613.2019-0760

• Materials science and technology • Previous Articles     Next Articles

Research progress of ternary material NCM for nickel-rich lithium ion battery

Zhongliang XIAO(),Chengfeng ZHOU,Liubin SONG(),Zhong CAO,Peng JIANG   

  1. Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
  • Received:2019-05-09 Online:2020-01-14 Published:2020-01-05
  • Contact: Liubin SONG

富镍锂离子电池三元材料NCM的研究进展

肖忠良(),周乘风,宋刘斌(),曹忠,蒋鹏   

  1. 长沙理工大学化学与食品工程学院,电力与交通材料保护湖南省重点实验室,湖南 长沙 410114
  • 通讯作者: 宋刘斌
  • 作者简介:肖忠良(1964—),男,博士,教授,研究方向为冶金材料物理化学、电子化学品、能源材料电化学和计算机化学、冶金化工过程的模拟。E-mail:xiaozhongliang@163.com
  • 基金资助:
    国家自然科学基金(51604042);中国科学院环境监测STS项目(KFJ-SW-STS-173);国家工业信息化部、财经部绿色制造系统集成项目;长沙市科技计划(kq1701077)

Abstract:

As a new energy battery, lithium-ion battery has a good application prospect. Battery capacity, rate performance and cycle performance are important evaluation indexes of battery performance. For the selection of electrode materials of high energy density, the structural stability and safety performance of the battery should be fully considered. At present, in view of the problem of lithium ion conduction rate and irreversible collapse, the improvement in the performance of lithium ion battery by means of coating, ion doping and the like are developed, but the actual demand requires a more effective modification method. Therefore, the research of the nickel-rich lithium ion battery focuses on the balance of capacity performance and safety performance. The research status and development directions of Ni-rich ternary materials for lithium-ion battery such as LiNi0.4Co0.2Mn0.4O2(NCM424), LiNi0.5Co0.2Mn0.3O2(NCM523), LiNi0.6Co0.2Mn0.2O2(NCM622), LiNi0.8Co0.1Mn0.1O2(NCM811) are reviewed. Simple modification of single material has encountered bottlenecks, and compounded modification methods, and multi-structure material design are the major development directions to improve battery performance. We point out the breakthrough in the development of lithium-ion battery should be based on the studies of the mechanism of action at the molecular level, the establishment of a unified theoretical model and the design of electrode structure from simulation.

Key words: lithium-ion battery, nickel-rich, electrochemistry, kinetics, thermodynamics

摘要:

锂离子电池作为新能源电池符合时代要求,具有良好的应用前景。电池容量、倍率性能与循环性能是电池性能的重要评价指标,在选取高能量密度电极材料的同时要充分考虑电池结构稳定性及其安全性能,三元材料基于这种思路进行设计。目前,针对电池中锂离子导通率与结构不可逆坍塌问题,通过包覆涂层、离子掺杂等手段改善锂离子电池性能已经常态化,实际需求要求有更有效的改性方法。因此,本文综述了富镍锂离子电池三元材料LiNi0.4Co0.2Mn0.4O2(NCM424)、LiNi0.5Co0.2Mn0.3O2(NCM523)、LiNi0.6Co0.2Mn0.2O2(NCM622)和LiNi0.8Co0.1Mn0.1O2(NCM811)的研究现状与发展导向,认为简单的单一材料改性已遇到瓶颈,改性方法复合、设计材料多元结构是提升电池性能的一大发展方向;从改性材料的合成和运行路径入手,研究分子水平上的作用机制,建立统一理论模型,通过计算模拟手段设计电极结构,实现锂离子电池突破性的发展。

关键词: 锂离子电池, 富镍, 电化学, 动力学, 热力学

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd