Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2566-2576.DOI: 10.16085/j.issn.1000-6613.2022-1277
• Materials science and technology • Previous Articles Next Articles
CHEN Fei1,2(), LIU Chengbao1,2,3(), CHEN Feng1,2,3, QIAN Junchao1,2,3, QIU Yongbin4, MENG Xianrong5, CHEN Zhigang1,2,3
Received:
2022-07-07
Revised:
2022-08-29
Online:
2023-06-02
Published:
2023-05-10
Contact:
LIU Chengbao
陈飞1,2(), 刘成宝1,2,3(), 陈丰1,2,3, 钱君超1,2,3, 邱永斌4, 孟宪荣5, 陈志刚1,2,3
通讯作者:
刘成宝
作者简介:
陈飞(1997—),男,硕士研究生,研究方向为g-C3N4基超级电容器电极材料的设计合成及其储能机理。E-mail:18020270742@ 163.com。
基金资助:
CLC Number:
CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576.
陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1277
1 | WANG Haofan, TANG Cheng, WANG Bin, et al. Bifunctional transition metal hydroxysulfides: Room-temperature sulfurization and their applications in Zn-air batteries[J]. Advanced Materials, 2017, 29(35): 1702327. |
2 | YAN Minglei, YAO Yadong, WEN Jiqiu, et al. Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24525-24535. |
3 | 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. |
ZOU Caineng, ZHAO Qun, ZHANG Guosheng, et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36(1): 1-10. | |
4 | WANG Guoping, ZHANG Lei, ZHANG Jiujun. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
5 | LI Chen, ZHANG Xiong, WANG Kai, et al. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors[J]. Journal of Energy Chemistry, 2021, 54: 352-367. |
6 | GONZALEZ Ander, GOIKOLEA Eider, BARRENA Jon Andoni, et al. Review on supercapacitors: Technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1189-1206. |
7 | 鲁浩天, 陈怡沁, 周静红, 等. 电化学双电层电容器动态模拟: 离子尺寸及扩散系数的优化[J]. 化工学报, 2019, 70(10): 4021-4031. |
LU Haotian, CHEN Yiqin, ZHOU Jinghong, et al. Simulation and optimization of electrochemical double layer capacitors: Effects of ion size and diffusion coefficient[J]. CIESC Journal, 2019, 70(10): 4021-4031. | |
8 | 陈斌, 张剑荣, 姜立萍, 等. 氧化钌在法拉第准电容器中的应用研究进展[J]. 电子元件与材料, 2001, 20(5): 28-29, 34. |
CHEN Bin, ZHANG Jianrong, JIANG Liping, et al. The development of the study on application of ruthenium oxide to Faraday pseudocapacitor[J]. Electronic Components & Materials, 2001, 20(5): 28-29, 34. | |
9 | 吕鉴名, 邢瑞光, 张邦文. 三维石墨烯/过渡金属氧化物超级电容器复合材料的研究进展[J]. 材料科学研究, 2016, 5(1): 20-31. |
Jianming LYU, XING Ruiguang, ZHANG Bangwen. Research advances in three dimensional graphene/transition metal oxide composite in supercapacitors[J]. Research of Materials Science, 2016(1): 20-31. | |
10 | 张海涛, 向翠丽, 邹勇进, 等. 纳米导电聚合物超级电容器研究进展[J]. 传感器与微系统, 2016, 35(8): 1-3, 7. |
ZHANG Haitao, XIANG Cuili, ZOU Yongjin, et al. Research progress on supercapacitors based on conducting nanopolymers[J]. Transducer and Microsystem Technologies, 2016, 35(8): 1-3, 7. | |
11 | 陈秀芳. 石墨相氮化碳的制备、表征及其光催化性能研究[D]. 福州: 福州大学, 2011. |
CHEN Xiufang. Preparation, characterization and photocatalytic properties of graphitie phase carbon nitride[D]. Fuzhou: Fuzhou University, 2011. | |
12 | 郭继鹏, 王敬锋, 林琳, 等. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(S1):1-7. |
GUO Jipeng, WANG Jingfeng, LIN Lin, et al. Progress in preparation of g-C3N4 with different morphologies[J]. Materials Reports, 2019, 33(S1): 1-7. | |
13 | ZHANG Yanjun, CHANG Liu, CHANG Xiaokai, et al. Combining in situ sedimentation and carbon-assisted synthesis of Co3O4/g-C3N4 nanocomposites for improved supercapacitor performance[J]. Diamond and Related Materials, 2021, 111: 108165. |
14 | JIANG Deli, XU Qing, MENG Suci, et al. Construction of cobalt sulfide/graphitic carbon nitride hybrid nanosheet composites for high performance supercapacitor electrodes[J].Journal of Alloys and Compounds, 2017, 706: 41-47. |
15 | VIVEK E, ARULRAJ A, KHALID M, et al. Facile synthesis of 2D Ni(OH)2 anchored g-C3N4 as electrode material for high-performance supercapacitor[J]. Inorganic Chemistry Communications, 2021, 130: 108704. |
16 | ASAITHAMBI S, SAKTHIVEL P, KARUPPAIAH M, et al. The bifunctional performance analysis of synthesized Ce doped SnO2/ g-C3N4 composites for asymmetric supercapacitor and visible light photocatalytic applications[J]. Journal of Alloys and Compounds, 2021, 866: 158807. |
17 | KUMAR Arun, KHANUJA Manika. Template-free graphitic carbon nitride nanosheets coated with polyaniline nanofibers as an electrode material for supercapacitor applications[J]. Renewable Energy, 2021, 171: 1246-1256. |
18 | MA Jie, TAO Xueyu, ZHOU Shixiang, et al. Facile fabrication of Ag/PANI/g-C3N4 composite with enhanced electrochemical performance as supercapacitor electrode[J]. Journal of Electroanalytical Chemistry, 2019, 835: 346-353. |
19 | LIU Minmin, HE Nating, GUO Hongxu, al et,Microwave pyrolysis and electrochemical supercapacitor of S-doped g-C 3N4 nanoparticles[J].Chinese Journal of Structural Chemistry, 2021, 40(6): 806-810. |
20 | BUTT F K, HAUENSTEIN P, KOSIAHN M, et al. An innovative microwave-assisted method for the synthesis of mesoporous two dimensional g-C3N4: A revisited insight into a potential electrode material for supercapacitors[J]. Microporous and Mesoporous Materials, 2020, 294: 109853. |
21 | DONG Bitao, LI Mingyan, CHEN Sheng, et al. Formation of g-C3N4@Ni(OH)2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 17890-17896. |
22 | XU Jing, HUANG Zefeng, JI Hao, et al. G-C3N4 anchored with MoS2 ultrathin nanosheets as high performance anode material for supercapacitor[J]. Materials Letters, 2019, 241: 35-38. |
23 | LIU Minmin, NIU Baitong, GUO Hongxu, et al. Simple preparation of g-C3N4@Ni3C nanosheets and its application in supercapacitor electrode materials, hydrogengeneration via NaBH4 hydrolysis and reduction of p-nitrophenol[J]. Inorganic Chemistry Communications, 2021, 130: 108687. |
24 | VINOTHA S, SUBRAMANI K, ONG W J, et al. CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor[J]. Journal of Colloid and Interface Science, 2021, 584: 204-215. |
25 | RAGUPATHI Veena, PANIGRAHI Puspamitra, Ganapathi SUBRAMANIAM N. G-C3N4 doped MnS as high performance electrode material for supercapacitor application[J]. Materials Letters, 2019, 246: 88-91. |
26 | PALANIVEL B, MUDISOODUM P S D, MAIYALAGAN T, et al. Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance[J]. Applied Surface Science, 2019, 498: 143807. |
27 | CHEN A Y, ZHANG T T, QIU Y J, et al. Construction of nanoporous gold/g-C3N4 heterostructure for electrochemical supercapacitor[J]. Electrochimica Acta, 2019, 294: 260-267. |
28 | SOLTANI Hamed, BAHIRAEI Hamed, GHASEMI Shahnaz. Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets[J]. Journal of Alloys and Compounds, 2022, 904: 163565. |
29 | XU Liang, LU Yun. One-step synthesis of a cobalt sulfide/reduced graphene oxide composite used as an electrode material for supercapacitors[J]. RSC Advances, 2015, 5(83): 67518-67523. |
30 | XU Yingxi, ZHOU Yafang, GUO Jianyu, et al. Preparation of SnS2/ g-C3N4 composite as the electrode material for Supercapacitor[J]. Journal of Alloys and Compounds, 2019, 806: 343-349. |
31 | DAI Meizhen, ZHAO Depeng, WU Xiang. Research progress on transition metal oxide based electrode materials for asymmetric hybrid capacitors[J]. Chinese Chemical Letters, 2020, 31(9): 2177-2188. |
32 | GURENKO V E, POPKOV V I, LOBINSKY A A. Synthesis of NiO granular nanospheres as a novel material for high-performance supercapacitors[J]. Materials Letters, 2020, 279: 128478. |
33 | LU Yuan, DENG Binglu, LIU Yangbiao, et al. Nanostructured Co3O4 for achieving high-performance supercapacitor[J]. Materials Letters, 2021, 285: 129101. |
34 | GUAN Yuzhu, JI Peiyuan, WAN Jing, et al. Ag-modified Fe2O3 nanoparticles on a carbon cloth as an anode material for high-performance supercapacitors[J]. Nanotechnology, 2020, 31(12): 125405. |
35 | ZHAO Jing, ZHU Botao, YANG Guijin, et al. Vacuum annealed MnO2 ultra-thin nanosheets with oxygen defects for high performance supercapacitors[J]. Journal of Physics and Chemistry of Solids, 2021, 150: 109856. |
36 | GUPTA S P, MORE M A, LATE D J, et al. Highly ordered nano-tunnel structure of hydrated tungsten oxide nanorods for superior flexible quasi-solid-state hybrid supercapacitor[J]. Applied Surface Science, 2021, 545: 149044. |
37 | KHAN A J, HANIF M, JAVED M S, et al. Energy storage properties of hydrothermally processed, nanostructured, porous CeO2 nanoparticles[J]. Journal of Electroanalytical Chemistry, 2020, 865: 114158. |
38 | XU Yingxi, WANG Li, ZHOU Yafang, et al. Synthesis of heterostructure SnO2/graphitic carbon nitride composite for high-performance electrochemical supercapacitor[J]. Journal of Electroanalytical Chemistry, 2019, 852: 113507. |
39 | ZHU Honglin, ZHENG Yueqing. Mesoporous Co3O4 anchored on the graphitic carbon nitride for enhanced performance supercapacitor[J]. Electrochimica Acta, 2018, 265: 372-378. |
40 | LI Dongwei, ZHU Sha, GAO Xiang, et al. Anchoring Sea-urchin-like Co(OH)2 microspheres on nickel foam as three-dimensional free-standing electrode for high-performance supercapacitors[J]. Ionics, 2021, 27(2): 789-799. |
41 | WANG Dawei, GUAN Bing, LI Yu, et al. Morphology-controlled synthesis of hierarchical mesoporous α-Ni(OH)2 microspheres for high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2018, 737: 238-247. |
42 | KAVYASHREE S S, RAUT B R, SANKAPAL S N, et al. Tuberose surface architecture of Sr(OH)2 film as supercapacitive electrode[J]. Electrochimica Acta, 2017, 258: 34-42. |
43 | FAN Yuqian, WANG Lumeng, MA Zhipeng, et al. The in situ synthesis of Fe(OH)3 film on Fe foam as efficient anode of alkaline supercapacitor based on a promising Fe3+/Fe0 energy storage mechanism[J]. Particle & Particle Systems Characterization, 2018, 35(6): 1700484. |
44 | HE Dong, WANG Guanda, LIU Guolong, et al. Facile route to achieve mesoporous Cu(OH)2 nanorods on copper foam for high-performance supercapacitor electrode[J]. Journal of Alloys and Compounds, 2017, 699: 706-712. |
45 | SHI Lei, ZHANG Jinglin, LIU Huidi, et al. Flower-like Ni(OH)2 hybridized g-C3N4 for high-performance supercapacitor electrode material[J]. Materials Letters, 2015, 145: 150-153. |
46 | MOHANTY A, JAIHINDH D P, FU Y P, et al. An extensive review on three dimension architectural Metal-Organic Frameworks towards supercapacitor application[J]. Journal of Power Sources, 2021, 488: 229444. |
47 | AZAM M A, RAMLI N S N, NOR N A, et al. Recent advances in biomass-derived carbon, mesoporous materials, and transition metal nitrides as new electrode materials for supercapacitor: A short review[J]. International Journal of Energy Research, 2021, 45(6): 8335-8346. |
48 | ZHOU Huijie, LI Xiaxia, LI Yan, et al. Applications of M x Se y (M=Fe, Co, Ni) and their composites in electrochemical energy storage and conversion[J]. Nano-Micro Letters, 2019, 11(1): 40. |
49 | EL-GENDY D M, ABDEL H R M, AL-ENIZI A M, et al. Synthesis and characterization of WC@GNFs as an efficient supercapacitor electrode material in acidic medium[J]. Ceramics International, 2020, 46(17): 27437-27445. |
50 | ZHANG Shuai, HUANG Ying, WANG Jiaming, et al. Ti3C2T x /g-C3N4 heterostructure films with outstanding capacitance for flexible solid-state supercapacitors[J]. Applied Surface Science, 2022, 599: 154015. |
51 | BAVATHARANI C, MUTHUSANKAR E, WABAIDUR S M, et al. Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review[J]. Synthetic Metals, 2021, 271: 116609. |
52 | ZHOU Shixiang, TAO Xueyu, MA Jie, et al. Synthesis of flower-like PANI/g-C3N4 nanocomposite as supercapacitor electrode[J]. Vacuum, 2018, 149: 175-179. |
53 | DONG Guangzhi, FAN Huiqing, FU Ke, et al. The evaluation of super-capacitive performance of novel g-C3N4/PPy nanocomposite electrode material with sandwich-like structure[J]. Composites Part B Engineering, 2019, 162: 369-377. |
54 | SUN Shibin, GUO Lin, CHANG Xueting, et al. MnO2/g-C3N4@PPy nanocomposite for high-performance supercapacitor[J]. Materials Letters, 2019, 236: 558-561. |
[1] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[2] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[3] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[4] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[5] | YANG Pengwei, YU Linzhu, WANG Fangfang, JIANG Haoxuan, ZHAO Guangjin, LI Qi, DU Mingzhe, MA Shuangchen. Application prospect, challenge and development of ammonia energy storage in new power system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4432-4446. |
[6] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[7] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[8] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[9] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[10] | XU Yuzhen, JIANG Dahua, LIU Jingtao, CHEN Pu. Preparation and properties of fly ash based phase change energy storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2595-2605. |
[11] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
[12] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[13] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
[14] | DU Baoning, ZHAO Shan, LIU Xiangqing, ZHANG Yi, XIAO Yaru, ZHANG Shaofei, LI Tiantian, SUN Jinfeng. Preparation and properties of nano porous CuMn-based oxide electrodes [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1484-1492. |
[15] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |