Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2555-2565.DOI: 10.16085/j.issn.1000-6613.2022-2069
• Materials science and technology • Previous Articles Next Articles
DAI Hang1,2(), GAO Ruixue1,2, LI Yiguo1, ZHU Jin2, WANG Jinggang2()
Received:
2022-11-07
Revised:
2023-01-01
Online:
2023-06-02
Published:
2023-05-10
Contact:
WANG Jinggang
戴行1,2(), 高瑞雪1,2, 李奕国1, 朱锦2, 王静刚2()
通讯作者:
王静刚
作者简介:
戴行(1998—),男,硕士研究生,研究方向为生物基高耐热聚酯。E-mail:daihang@nimte.ac.cn。
基金资助:
CLC Number:
DAI Hang, GAO Ruixue, LI Yiguo, ZHU Jin, WANG Jinggang. Research progress on the synthesis of excellent impact and transparency polyesters with high glass transition temperature[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2555-2565.
戴行, 高瑞雪, 李奕国, 朱锦, 王静刚. 高玻璃化转变温度抗冲击透明聚酯的研究进展[J]. 化工进展, 2023, 42(5): 2555-2565.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2069
1 | CAKMAK M, WANG Y D, SIMHAMBHATLA M. Processing characteristics, structure development, and properties of uni and biaxially stretched poly(ethylene 2,6-naphthalate) (PEN) films[J]. Polymer Engineering & Science, 1990, 30(12): 721-733. |
2 | JEONG Young Gyu, Won Ho JO, LEE Sang Cheol. Synthesis and isodimorphic cocrystallization behavior of poly(1,4-cyclohexylenedimethylene terephthalate-co-1,4-cyclohexylenedimethylene 2,6-naphthalate) copolymers[J]. Journal of Polymer Science B: Polymer Physics, 2004, 42(1): 177-187. |
3 | KASMI N, TERZOPOULOU Z, PAPAGEORGIOU G Z, et al. Poly(1,4-cyclohexanedimethylene 2,6-naphthalate) polyester with high melting point: Effect of different synthesis methods on molecular weight and properties[J]. Express Polymer Letters, 2018, 12(3): 227-237. |
4 | WANG Guoqiang, YU Jiayi, JIANG Min, et al. Bio-based copolyesters poly(butylene 2,6-naphthalate-co-butylene furandicarboxylate) derived from 2,5-furandicarboxylic acid (FDCA): Synthesis, characterization, and properties[J]. Polymer Testing, 2020, 91: 106771. |
5 | WANG Guoqiang, YANG Guitang, JIANG Min, et al. Poly(propylene naphthalate-co-propylene 2,5-thiophenedicarboxylate)s derived from bio-based 2,5-thiophenedicarboxylic acid (TDCA): Synthesis and properties[J]. Polymer Testing, 2021, 93: 106955. |
6 | TOKITA Masatoshi, WATANABE Junji. Several interesting fields exploited through understanding of polymeric effects on liquid crystals of main-chain polyesters[J]. Polymer Journal, 2006, 38(7): 611-638. |
7 | MONDSCHEIN Ryan J, DENNIS Joseph M, LIU Haoyu, et al. Synthesis and characterization of amorphous bibenzoate (co)polyesters: Permeability and rheological performance[J]. Macromolecules, 2017, 50(19): 7603-7610. |
8 | MONDSCHEIN Ryan J, DENNIS Joseph M, LIU Haoyu, et al. Influence of bibenzoate regioisomers on cyclohexanedimethanol-based (co)polyester structure-property relationships[J]. Macromolecules, 2019, 52(3): 835-843. |
9 | Eliot EDLING H, LIU Haoyu, SUN Hua, et al. Copolyesters based on bibenzoic acids[J]. Polymer, 2018, 135: 120-130. |
10 | KELSEY Donald R, SCARDINO Betty M, GREBOWICZ Janusz S, et al. High impact, amorphous terephthalate copolyesters of rigid 2,2,4,4-tetramethyl-1,3-cyclobutanediol with flexible diols[J]. Macromolecules, 2000, 33(16): 5810-5818. |
11 | BEALL Gary W, POWELL Clois E, HANCOCK Jesse, et al. Physical properties of CBDO based co-polyterephthalate nanocomposites[J]. Applied Clay Science, 2007, 37(3/4): 295-306. |
12 | ZHANG Musan, MOORE Robert B, LONG Timothy E. Melt transesterification and characterization of segmented block copolyesters containing 2,2,4,4-tetramethyl-1,3-cyclobutanediol[J]. Journal of Polymer Science A: Polymer Chemistry, 2012, 50(18): 3710-3718. |
13 | BANERJEE Aanindeeta, DICK Graham R, YOSHINO Tatsuhiko, et al. Carbon dioxide utilization via carbonate-promoted C—H carboxylation[J]. Nature, 2016, 531(7593): 215-219. |
14 | FEI Xuan, WANG Jinggang, ZHANG Xiaoqin, et al. Recent progress on bio-based polyesters derived from 2,5-furandicarbonxylic acid (FDCA)[J]. Polymers, 2022, 14(3): 625. |
15 | WANG Jinggang, LIU Xiaoqing, ZHANG Yajie, et al. Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties[J]. Polymer, 2016, 103: 1-8. |
16 | WANG Jinggang, LIU Xiaoqing, JIA Zhen, et al. Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1,4-cyclohexanedimethanol: Influence of stereochemistry of 1,4-cyclohexylene units[J]. Polymer, 2018, 137: 173-185. |
17 | WANG Jinggang, LIU Xiaoqing, JIA Zhen, et al. Synthesis of bio-based poly(ethylene 2,5‐furandicarboxylate) copolyesters: Higher glass transition temperature, better transparency, and good barrier properties[J]. Journal of Polymer Science A: Polymer Chemistry, 2017, 55(19): 3298-3307. |
18 | WANG Jinggang, LIU Xiaoqing, ZHU Jin, et al. Copolyesters based on 2,5-furandicarboxylic acid (FDCA): Effect of 2,2,4,4-tetramethyl-1,3-cyclobutanediol units on their properties[J]. Polymers, 2017, 9(9): 305. |
19 | WANG Jinggang, MAHMUD Sakil, ZHANG Xiaoqin, et al. Bio-based amorphous polyesters with high Tg: Trade-off between rigid and flexible cyclic diols[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6401-6411. |
20 | KAINULAINEN Tuomo P, GOWDA Vasantha, HEISKANEN Juha P, et al. Weathering of furan and 2,2'-bifuran polyester and copolyester films[J]. Polymer Degradation and Stability, 2022, 200: 109960. |
21 | KAINULAINEN Tuomo P, SIRVIÖ Juho A, SETHI Jatin, et al. UV-blocking synthetic biopolymer from biomass-based bifuran diester and ethylene glycol[J]. Macromolecules, 2018, 51(5): 1822-1829. |
22 | KAINULAINEN Tuomo P, HUKKA Terttu I, ÖZEREN Hüsamettin D, et al. Utilizing furfural-based bifuran diester as monomer and comonomer for high-performance bioplastics: Properties of poly(butylene furanoate), poly(butylene bifuranoate), and their copolyesters[J]. Biomacromolecules, 2020, 21(2): 743-752. |
23 | ZHANG Yunfan, ENOMOTO Yukiko, IWATA Tadahisa. Synthesis and characterization of biphenyl polyesters derived from divanillic acid and cyclic diols[J]. Polymer, 2020, 203: 122751. |
24 | NGUYEN Ha Thi Hoang, REIS Marcus H, QI Pengxu, et al. Polyethylene ferulate (PEF) and congeners: Polystyrene mimics derived from biorenewable aromatics[J]. Green Chemistry, 2015, 17(9): 4512-4517. |
25 | DING Lei, LIU Li, CHEN Yifan, et al. Modification of poly(ethylene terephthalate) by copolymerization of plant-derived α-truxillic acid with excellent ultraviolet shielding and mechanical properties[J]. Chemical Engineering Journal, 2019, 374: 1317-1325. |
26 | SHAHNI Rahul K, MABIN Micah, WANG Zhihan, et al. Synthesis and characterization of BPA-free polyesters by incorporating a semi-rigid cyclobutanediol monomer[J]. Polymer Chemistry, 2020, 11(37): 6081-6090. |
27 | NSENGIYUMVA Olivier, MILLER Stephen A. Synthesis, characterization, and water-degradation of biorenewable polyesters derived from natural camphoric acid[J]. Green Chemistry, 2019, 21(5): 973-978. |
28 | GARLOTTA Donald. A literature review of poly(lactic acid)[J]. Journal of Polymers and the Environment, 2001, 9(2): 63-84. |
29 | ZHU Rui, LIU Hongzhi, ZHANG Jinwen. Compatibilizing effects of maleated poly(lactic acid) (PLA) on properties of PLA/soy protein composites[J]. Industrial & Engineering Chemistry Research, 2012, 51(22): 7786-7792. |
30 | INKINEN Saara, HAKKARAINEN Minna, ALBERTSSON Ann-Christine, et al. From lactic acid to poly(lactic acid) (PLA): Characterization and analysis of PLA and its precursors[J]. Biomacromolecules, 2011, 12(3): 523-532. |
31 | L-T LIM, AURAS R, RUBINO M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science, 2008, 33(8): 820-852. |
32 | PANG Chengcai, JIANG Xueshuang, YU Yan, et al. Copolymerization of natural camphor-derived rigid diol with various dicarboxylic acids: Access to biobased polyesters with various properties[J]. ACS Macro Letters, 2019, 8(11): 1442-1448. |
33 | LIU Jui-Hsiang, WANG Hung-Yu. Synthesis and characterization of novel copolymers with acid-labile ketal moieties derived from camphor[J]. Journal of Applied Polymer Science, 2003, 90(11): 2969-2978. |
34 | CHOI Gwang-Ho, HWANG Da Young, Dong Hack SUH. High thermal stability of bio-based polycarbonates containing cyclic ketal moieties[J]. Macromolecules, 2015, 48(19): 6839-6845. |
35 | PARK Jeong Eon, HWANG Da Young, CHOI Gwang Ho, et al. Fast hydrolysis polyesters with a rigid cyclic diol from camphor[J]. Biomacromolecules, 2017, 18(8): 2633-2639. |
36 | LINGIER Sophie, SPIESSCHAERT Yann, DHANIS Bastiaan, et al. Rigid polyurethanes, polyesters, and polycarbonates from renewable ketal monomers[J]. Macromolecules, 2017, 50(14): 5346-5352. |
37 | JAPU Cristina, DE ILARDUYA Antxon Martínez, ALLA Abdelilah, et al. Bio-based poly(ethylene terephthalate) copolyesters made from cyclic monomers derived from tartaric acid[J]. Polymer, 2014, 55(10): 2294-2304. |
38 | LAVILLA Cristina, GUBBELS Erik, ALLA Abdelilah, et al. Carbohydrate-based PBT copolyesters from a cyclic diol derived from naturally occurring tartaric acid: A comparative study regarding melt polycondensation and solid-state modification[J]. Green Chemistry, 2014, 16(4): 1789-1798. |
39 | LAVILLA C, ALLA A, DE ILARDUYA A Martínez, et al. Carbohydrate-based polyesters made from bicyclic acetalized galactaric acid[J]. Biomacromolecules, 2011, 12(7): 2642-2652. |
40 | LAVILLA C, ALLA A, DE ILARDUYA A Martínez, et al. Bio-based poly(butylene terephthalate) copolyesters containing bicyclic diacetalized galactitol and galactaric acid: Influence of composition on properties[J]. Polymer, 2012, 53(16): 3432-3445. |
41 | HORDYJEWSKA Anna, OSTAPIUK Aleksandra, HORECKA Anna, et al. Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential[J]. Phytochemistry Reviews, 2019, 18(3): 929-951. |
42 | JEROMENOK Jekaterina, Winfried BÖHLMANN, ANTONIETTI Markus, et al. Intrinsically microporous polyesters from botulin-toward renewable materials for gas separation made from birch bark[J]. Macromolecular Rapid Communications, 2011, 32(22): 1846-1851. |
43 | OKADA Masuhiro, SUZUKI Katsunori, MAWATARI Yasuteru, et al. Biopolyester prepared using unsaturated betulin (betulinol) extracted from outer birch bark and dicarboxylic acid dichlorides and its thermal-induced crosslinking[J]. European Polymer Journal, 2019, 113: 12-17. |
44 | THIYAGARAJAN Shanmugam, WU Jing, KNOOP Rutger J I, et al. Isohexide hydroxy esters: Synthesis and application of a new class of biobased AB-type building blocks[J]. RSC Advances, 2014, 4(89): 47937-47950. |
45 | KASMI Nejib, MAJDOUB Mustapha, PAPAGEORGIOU George Z, et al. Synthesis and crystallization of new fully renewable resources-based copolyesters: Poly(1,4-cyclohexanedimethanol-co-isosorbide 2,5-furandicarboxylate)[J]. Polymer Degradation and Stability, 2018, 152: 177-190. |
46 | QUINTANA Robert, DE ILARDUYA Antxon Martínez, ALLA Abdelilah, et al. Poly(ethylene terephthalate) terpolyesters containing 1,4-cyclohexanedimethanol and isosorbide[J]. High Performance Polymers, 2012, 24(1): 24-30. |
47 | YOON Won Jae, HWANG Sung Yeon, Jun Mo KOO, et al. Synthesis and characteristics of a biobased high-Tg terpolyester of isosorbide, ethylene glycol, and 1,4-cyclohexane dimethanol: Effect of ethylene glycol as a chain linker on polymerization[J]. Macromolecules, 2013, 46(18): 7219-7231. |
48 | YOON Won Jae, Kwang Sei OH, Jun Mo KOO, et al. Advanced polymerization and properties of biobased high tg polyester of isosorbide and 1,4-cyclohexanedicarboxylic acid through in situ acetylation[J]. Macromolecules, 2013, 46(8): 2930-2940. |
49 | ZHANG Fuchen, WANG Qiuxia, WANG Lipeng, et al. Implementing plant‐derived isosorbide and isomannide as comonomers for polyester synthesis: Effects of crystallization properties on optical properties[J]. Journal of Applied Polymer Science, 2017, 134(43): 45444. |
50 | WU Jing, EDUARD Pieter, THIYAGARAJAN Shanmugam, et al. Semi-aromatic polyesters based on a carbohydrate-derived rigid diol for engineering plastics[J]. ChemSusChem, 2015, 8(1): 67-72. |
[1] | TAN Jihuai, YU Min, ZHANG Tongtong, HUANG Nengkun, WANG Ziwen, ZHU Xinbao. Manufacturing of tannin polypropoxy ether carboxylates as efficient and improved migration resistance plasticizers for PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4847-4855. |
[2] | LYU Xuedong, LUO Faliang, LIN Haitao, SONG Danqing, LIU Yi, NIU Ruixue, ZHENG Liuchun. Recent progress of synthesis technology and gas barrier research of poly(butylene succinate) [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2546-2554. |
[3] | HU Xuan, CHEN Ying. Effects of exposure of polyester fiber microplastics on activated sludge system performance and microbial community structure [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1051-1060. |
[4] | LI Zhibin, TANG Hui, LUO Dawei, YING Qiao. Progress in chemical recycling of waste PET and preparation of unsaturated polyester resins [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3279-3292. |
[5] | YI Conghua, XU Qinghe, WANG Miao, YANG Dongjie. Research progress of pH-sensitive biopolymer nanocarriers [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3411-3420. |
[6] | He ZHU, Yuecheng ZHANG, Jiquan ZHAO. Synthesis of nitriles and pyridine bases from bio-based small molecules by catalytic amination [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3077-3085. |
[7] | Xuming YAN, Xue HUANG, Ruizhao YANG, Guangzhu FENG. A new type of unsaturated polyester resin with reactive multi-walled carbon nanotube and C36 dimer fatty acid: preparation and property [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1888-1896. |
[8] | CHEN Guangyu, WU Linbo, LI Bogeng. Progress in the synthesis of bio-based monomer 2,5-furandicarboxylic acid through 5-hydroxymethylfurfural route [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3146-3154. |
[9] | WANG Jingchang, SHANG Xuehang, WANG Weijing, CHEN Shuhua, ZHAN Shiping. Review on enzymatic synthesis of aliphatic polyester [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2592-2600. |
[10] | WANG Jinggang, LIU Xiaoqing, ZHU Jin. Research progress on the synthesis of bio-based aromatic platform chemical 2,5-furandicarboxylic acid [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 672-682. |
[11] | ZHOU Jinjie, WANG Xudong, SUN Yaqin, XIU Zhilong. Progress on microbial electrosynthesis of bio-based chemicals [J]. Chemical Industry and Engineering Progree, 2016, 35(10): 3005-3015. |
[12] | XU Xin, CHEN Xiao, XIAN Mo. Bio-based chemicals technology innovation and prospects facing resource and environment challenges [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 3825-3831. |
[13] | LI Jing,JIANG Jianchun,XU Junming,XIA Haihong,LIU Peng. ?Synthesis of maleic anhydride modified oleic acid-based polyester polyols [J]. Chemical Industry and Engineering Progree, 2014, 33(12): 3353-3357. |
[14] | Lü Chenqiu,GU Aijun,ZHANG Yuhang,XIE Zhenwei . PET polymerization analysis and process simulation with Aspen Polymer [J]. Chemical Industry and Engineering Progree, 2014, 33(05): 1086-1092. |
[15] | LV Wei,JIANG Jianchun,XU Junming,LI Jing . Preparation and properties of polyester polyol and polyurethane foam with fatty acids from Jatropha curcas L. seed oil [J]. Chemical Industry and Engineering Progree, 2012, 31(06): 1280-1284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |