Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2219-2232.DOI: 10.16085/j.issn.1000-6613.2022-1382
• Chemical processes and equipment • Previous Articles Next Articles
SONG Minhang1,2(), ZHAO Lixin1,3(), XU Baorui1,3, LIU Lin1,3, ZHANG Shuang1,3
Received:
2022-07-22
Revised:
2022-11-01
Online:
2023-06-02
Published:
2023-05-10
Contact:
ZHAO Lixin
宋民航1,2(), 赵立新1,3(), 徐保蕊1,3, 刘琳1,3, 张爽1,3
通讯作者:
赵立新
作者简介:
宋民航(1986—),男,博士,副研究员,主要从事多相旋流分离及燃料低碳清洁高效燃烧方面的研究工作。E-mail:songminhang@ 126.com。
基金资助:
CLC Number:
SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Research progress of cyclone-enhanced separation based on disperse phase rearrangement at the inlet[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2219-2232.
宋民航, 赵立新, 徐保蕊, 刘琳, 张爽. 基于入口分散相重排序的旋流强化分离研究进展[J]. 化工进展, 2023, 42(5): 2219-2232.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1382
沿径向受力 | 沿轴向受力 | ||
---|---|---|---|
分散相所受离心力FC | 分散相所受重力Fg | ||
分散相所受沿径向压力梯度力FB | 分散相所受沿轴向压力梯度力Fb | ||
分散相所受沿径向斯托克斯阻力FD | 分散相所受沿轴向斯托克斯阻力Fd | ||
分散相沿径向受力平衡关系式 | 分散相沿轴向受力平衡关系式 | ||
分散相粒径d与其径向位置r的关系 | 分散相粒径d与轴向相对速率uz 的关系 |
沿径向受力 | 沿轴向受力 | ||
---|---|---|---|
分散相所受离心力FC | 分散相所受重力Fg | ||
分散相所受沿径向压力梯度力FB | 分散相所受沿轴向压力梯度力Fb | ||
分散相所受沿径向斯托克斯阻力FD | 分散相所受沿轴向斯托克斯阻力Fd | ||
分散相沿径向受力平衡关系式 | 分散相沿轴向受力平衡关系式 | ||
分散相粒径d与其径向位置r的关系 | 分散相粒径d与轴向相对速率uz 的关系 |
分离情况编号 | 分散相 | 连续相 | 密度关系 | 利用分散相移动过程中的 聚并长大 | 利用分散相移动过程中的 惯性碰撞 | 布置各股液流于合适的 旋流场入射位置 |
---|---|---|---|---|---|---|
1 | 液 | 液 | ρ分散相<ρ连续相 | √ | × | √ |
2 | 液 | 液 | ρ分散相>ρ连续相 | √ | × | √ |
3 | 固 | 液 | ρ分散相>ρ连续相 | × | √ | √ |
4 | 固 | 气 | ρ分散相>ρ连续相 | × | √ | √ |
5 | 气 | 液 | ρ分散相<ρ连续相 | √ | × | √ |
6 | 液 | 气 | ρ分散相>ρ连续相 | √ | × | √ |
分离情况编号 | 分散相 | 连续相 | 密度关系 | 利用分散相移动过程中的 聚并长大 | 利用分散相移动过程中的 惯性碰撞 | 布置各股液流于合适的 旋流场入射位置 |
---|---|---|---|---|---|---|
1 | 液 | 液 | ρ分散相<ρ连续相 | √ | × | √ |
2 | 液 | 液 | ρ分散相>ρ连续相 | √ | × | √ |
3 | 固 | 液 | ρ分散相>ρ连续相 | × | √ | √ |
4 | 固 | 气 | ρ分散相>ρ连续相 | × | √ | √ |
5 | 气 | 液 | ρ分散相<ρ连续相 | √ | × | √ |
6 | 液 | 气 | ρ分散相>ρ连续相 | √ | × | √ |
1 | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
LIU He, GAO Yang, PEI Xiaohan, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
2 | 肖学. 水力旋流器应用的现状及发展趋势[J]. 化工设备与管道, 2018, 55(3): 37-41. |
XIAO Xue. Current situation and developing trend of hydrocyclone[J]. Process Equipment & Piping, 2018, 55(3): 37-41. | |
3 | KHAROUA N, KHEZZAR L, NEMOUCHI Z. Hydrocyclones for deoiling applications—A review[J]. Petroleum Science and Technology, 2010, 28(7): 738-755. |
4 | 于文轩, 冯瀚元. “双碳”目标下能效“领跑者”制度的完善路径[J]. 行政管理改革, 2021(10): 40-49. |
YU Wenxuan, FENG Hanyuan. Improving efficiency of top-runner program under the target of carbon peaking and neutralization[J]. Administration Reform, 2021(10): 40-49. | |
5 | 王硕. 六部门发布《工业能效提升行动计划》[N]. 人民政协报, 2022-07-07(005). |
WANG Shuo. Six departments release “Action Plan for Improving Industrial Energy Efficiency” [N]. CPPCC Daily, 2022-07-07(005). | |
6 | 付鹏波, 黄渊, 王剑刚, 等. 旋流分离过程强化新技术[J]. 化工进展, 2020, 39(12): 4766-4778. |
FU Pengbo, HUANG Yuan, WANG Jiangang, et al. Process intensification technology for hydrocyclone separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4766-4778. | |
7 | 宋民航, 赵立新, 徐保蕊, 等. 液-液水力旋流器分离效率深度提升技术探讨[J]. 化工进展, 2021, 40(12): 6590-6603. |
SONG Minhang, ZHAO Lixin, XU Baorui, et al. Discussion on technology of improving separation efficiency of liquid-liquid hydrocyclone[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6590-6603. | |
8 | GOMEZ Carlos, CALDENTEY Juan, WANG Shoubo, et al. Oil/water separation in liquid/liquid hydrocyclones (LLHC): Part 1—Experimental investigation[J]. SPE Journal, 2002, 7(4): 353-372. |
9 | LI Feng, LIU Peikun, YANG Xinghua, et al. Effects of inlet concentration on the hydrocyclone separation performance with different inlet velocity[J]. Powder Technology, 2020, 375: 337-351. |
10 | PETTY C A, PARKS S M. Flow structures within miniature hydrocyclones[J]. Minerals Engineering, 2004, 17(5): 615-624. |
11 | 韩丽艳. 同向出流倒锥式旋流器结构设计及分离特性研究[D]. 大庆: 东北石油大学, 2013. |
HAN Liyan. Structure design and separation characteristic study of a co-rotating outflow reverse-cone hydrocyclone[D]. Daqing: Northeast Petroleum University, 2013. | |
12 | 周先桃, 雷明光, 褚良银, 等. 高效水力旋流器: CN2522174Y[P]. 2002-11-27. |
ZHOU Xiantao, LEI Mingguang, CHU Liangyin, et al. Efficient hydraulic swirler: CN2522174Y[P]. 2002-11-27. | |
13 | DELGADILLO Jose A, RAJAMANI Raj K. A comparative study of three turbulence-closure models for the hydrocyclone problem[J]. International Journal of Mineral Processing, 2005, 77(4): 217-230. |
14 | ZHAO Lixin, JIANG Minghu, LI Feng. Experimental study on the separation performance of air-injected de-oil hydrocyclones[J]. Chemical Engineering Research and Design, 2010, 88(5/6): 772-778. |
15 | 赵立新, 蒋明虎, 刘书孟. 微孔材料对气携式液-液水力旋流器性能的影响[J]. 石油机械, 2006, 34(10): 5-7, 2. |
ZHAO Lixin, JIANG Minghu, LIU Shumeng. Influence of micro-pore materials on the air-injected hydrocyclone[J]. China Petroleum Machinery, 2006, 34(10): 5-7, 2. | |
16 | NUNES Sirlene A, MAGALHÃES Hortência L F, DE FARIAS NETO Severino R, et al. Impact of permeable membrane on the hydrocyclone separation performance for oily water treatment[J]. Membranes, 2020, 10(11): 350. |
17 | BAI Zhishan, WANG Hualin, TU Shan-Tung. Oil-water separation using hydrocyclones enhanced by air bubbles[J]. Chemical Engineering Research and Design, 2011, 89(1): 55-59. |
18 | BAI Zhishan, WANG Hualin, TU Shan-Tung. Study of air-liquid flow patterns in hydrocyclone enhanced by air bubbles[J]. Chemical Engineering & Technology, 2009, 32(1): 55-63. |
19 | Parviz ALI-ZADE, USTUN Ozgur, VARDARLI Feyzullah, et al. Development of an electromagnetic hydrocyclone separator for purification of wastewater[J]. Water and Environment Journal, 2008, 22(1): 11-16. |
20 | GAY J C, TRIPONEY G, BEZARD C, et al. Rotary cyclone will improve oily water treatment and reduce space requirement/weight on offshore platforms[C]//SPE Offshore Europe, Aberdeen, United Kingdom. SPE, 1987. |
21 | ZHAO Lixin, LI Feng, MA Zhanzhao, et al. Theoretical analysis and experimental study of dynamic hydrocyclones[J]. Journal of Energy Resources Technology, 2010, 132(4): 042901-1. |
22 | 钟秋月. 管柱式气液固三相旋流分离器的性能研究[D]. 大连: 大连理工大学, 2013. |
ZHONG Qiuyue. Performance research on the gas liquid solid triphase cylindrical cyclone separator[D]. Dalian: Dalian University of Technology, 2013. | |
23 | NENU Romanus Krisantus TUE, YOSHIDA Hideto, FUKUI Kunihiro, et al. Separation performance of sub-micron silica particles by electrical hydrocyclone[J]. Powder Technology, 2009, 196(2): 147-155. |
24 | STRASSER Wayne. Cyclone-ejector coupling and optimisation[J]. Progress in Computational Fluid Dynamics, an International Journal, 2010, 10(1): 19. |
25 | GONG Haifeng, YU Bao, DAI Fei, et al. Simulation on performance of a demulsification and dewatering device with coupling double fields: Swirl centrifugal field and high-voltage electric field[J]. Separation and Purification Technology, 2018, 207: 124-132. |
26 | LU Hao, LIU Yiqian, CAI Jingbo, et al. Treatment of offshore oily produced water: Research and application of a novel fibrous coalescence technique[J]. Journal of Petroleum Science and Engineering, 2019, 178: 602-608. |
27 | WAHI Rafeah, CHUAH Luqman Abdullah, CHOONG Thomas Shean Yaw, et al. Oil removal from aqueous state by natural fibrous sorbent: An overview[J]. Separation and Purification Technology, 2013, 113: 51-63. |
28 | YONG Jiale, FANG Yao, CHEN Feng, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016, 389: 1148-1155. |
29 | WANG Zhibin, CHU Liangyin, CHEN Wenmei, et al. Experimental investigation of the motion trajectory of solid particles inside the hydrocyclone by a Lagrange method[J]. Chemical Engineering Journal, 2008, 138(1/2/3): 1-9. |
30 | KOBAYASHI Mikihiko, FUDOUZI Hiroshi, EGASHIRA Mitsuru, et al. Particle arrangement and its application[J]. Materials & Design, 2000, 21(6): 571-574. |
31 | 刘海生, 艾志久, 贺会群, 等. 单锥式油水分离旋流器内流场的数值模拟[J]. 西安石油大学学报(自然科学版), 2006, 21(6): 83-86, 118. |
LIU Haisheng, AI Zhijiu, HE Huiqun, et al. Numerical simulation of the inner flow field in the single-cone hydrocyclone for oil-water separation[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2006, 21(6): 83-86, 118. | |
32 | 赵庆国, 薛敦松. 单锥水力旋流器的迁移率模型[J]. 石油大学学报(自然科学版), 2000, 24(6): 62-65, 3. |
ZHAO Qingguo, XUE Dunsong. A computational model for migration probability of single cone liquid liquid hydrocyclones[J]. Journal of the University of Petroleum, China, 2000, 24(6): 62-65, 3. | |
33 | FU Pengbo, WANG Fei, MA Liang, et al. Fine particle sorting and classification in the cyclonic centrifugal field[J]. Separation and Purification Technology, 2016, 158: 357-366. |
34 | 龚升高. 湍流条件下液滴或气泡破裂和聚并过程研究[D]. 湘潭: 湘潭大学, 2017. |
GONG Shenggao. Study on the breakage and coalescence processes of droplets/bubbles under turbulent conditions[D]. Xiangtan: Xiangtan University, 2017. | |
35 | 赵立新, 宋民航, 杨宏燕, 等. 基于粒径选择的水力旋流分离装置: CN109290075A[P]. 2019-02-01. |
ZHAO Lixin, SONG Minhang, YANG Hongyan, et al. Hydraulic cyclone separating device based on particle size selection: CN109290075A[P]. 2019-02-01. | |
36 | LIU Lin, ZHAO Lixin, SUN Yian, et al. Separation performance of hydrocyclones with medium rearrangement internals[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105642. |
37 | 赵立新, 蒋明虎, 徐保蕊, 等. 轴流式反转入口流道旋流器: CN104815768A[P]. 2015-08-05. |
ZHAO Lixin, JIANG Minghu, XU Baorui, et al. Axial-flow-type inverted inlet flow channel swirler: CN104815768A[P]. 2015-08-05. | |
38 | ZHAO Lixin, XU Baorui, JIANG Minghu, et al. Flow-field distribution and parametric-optimisation analysis of spiral-tube separators[J]. Chemical Engineering Research and Design, 2012, 90(8): 1011-1018. |
39 | 李权, 林茹亭, 王宗勇, 等. 聚结构件形式对管式油水分离器油出口含油率的影响[J]. 化学工业与工程, 2022. DOI: 10.13353/j.issn.1004.9533.20220105 . |
LI Quan, LIN Ruting, WANG Zongyong, et al. Influence of the form of coalescers on the oil content of the oil outlet of tubular oil-water separator [J]. Chemical Industry and Engineering, 2022. DOI: 10.13353/j.issn.1004.9533.20220105 . | |
40 | 马骏, 何亚其, 白健华, 等. 入口结构对粒径重构旋流器分离性能影响分析[J]. 机械科学与技术, 2021, 40(9): 1347-1354. |
MA Jun, HE Yaqi, BAI Jianhua, et al. Analyzing impact of inlet structure on performance of hydrocyclone with droplet size reconstruction[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1347-1354. | |
41 | 宋民航, 赵岩, 邵春岩, 等. 一种粒径分级聚结式旋流器: CN110280403A[P]. 2019-09-27. |
SONG Minhang, ZHAO Yan, SHAO Chunyan, et al. Particle size grading coalescence type hydrocyclones: CN110280403A[P]. 2019-09-27. | |
42 | YANG Qiang, Wenjie LYU, MA Liang, et al. CFD study on separation enhancement of mini-hydrocyclone by particulate arrangement[J]. Separation and Purification Technology, 2013, 102: 15-25. |
43 | LIU P-K, CHU L-Y, WANG J, et al. Enhancement of hydrocyclone classification efficiency for fine particles by introducing a volute chamber with a pre-sedimentation function[J]. Chemical Engineering & Technology, 2008, 31(3): 474-478. |
44 | 付鹏波, 汪华林, 王飞, 等. 进口颗粒排序型旋流器: CN106269315A[P]. 2017-01-04. |
FU Pengbo, WANG Hualin, WANG Fei, et al. Inlet particle sequencing type swirler: CN106269315A[P]. 2017-01-04. | |
45 | FU Pengbo, WANG Fei, YANG Xuejing, et al. Inlet particle-sorting cyclone for the enhancement of PM2.5 separation[J]. Environmental Science & Technology, 2017, 51(3): 1587-1594. |
46 | 赵传伟, 李增亮, 董祥伟, 等. 井下双级串联式水力旋流器数值模拟与实验[J]. 石油学报, 2014, 35(3): 551-557. |
ZHAO Chuanwei, LI Zengliang, DONG Xiangwei, et al. Numerical simulation and experiment of downhole two-stage tandem hydrocyclone[J]. Acta Petrolei Sinica, 2014, 35(3): 551-557. | |
47 | LIU Yucheng, CHENG Qixuan, ZHANG Bo, et al. Three-phase hydrocyclone separator—A review[J]. Chemical Engineering Research and Design, 2015, 100: 554-560. |
[1] | FAN Junling, HE Hao, ZHANG Pan, CHEN Guanghui. Effect of local erosion on flow field and separation performance of α-type cyclone separator [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4025-4034. |
[2] | XIE Ming, SUN Liqiang, SONG Jianfei, WEI Yaodong. Analysis and characterization of gas swirling flow dynamic characteristics in a cyclone separator [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3455-3464. |
[3] | ZHU Mingjun, HU Dapeng. Simulation and experimental analysis of the influence of operating parameters on oil-water-sand separation performance of three-phase decanter centrifuge [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5188-5199. |
[4] | SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Discussion on technology of improving separation efficiency of liquid-liquid hydrocyclone [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6590-6603. |
[5] | Aijun GUO, Zhengzheng JIN, Liming GONG, He LIU, Kun CHEN, Baoquan MU, Zongxian WANG. Centrifugal-electrostatic combination of separating solid particles of FCC slurry assisted by additives [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3126-3135. |
[6] | Jianxin TENG, Chunying YANG, Zheng HE. Performance analysis and structural optimization of inertial separation devices [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2074-2084. |
[7] | GUO Aijun, GONG Liming, ZHAO Na, CHEN Kun, LIU He, WANG Zongxian, HUANG Jinju, SUN Meng, YUAN Juncong. The influence of additive modification on electrostatic separation of FCC slurry oil [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3266-3272. |
[8] | ZHOU Xiantao, WANG Yimou, MA Liang, LIU Anlin, HE Mengya. Flue gas desulfurization research in liquid jet-absorption coupled gas cyclone-separation device [J]. Chemical Industry and Engineering Progree, 2016, 35(12): 4053-4059. |
[9] | JIANG Minghu, TAN Fang, JIN Shuqin, LONG Guilan, CHEN Guiqin, XU Baorui. Sharp optimization of hydrocyclone based on Fluent mesh morphing [J]. Chemical Industry and Engineering Progree, 2016, 35(08): 2355-2361. |
[10] | CHEN Jundong, SONG Jincang, ZENG Chuan, ZOU Pengcheng, WANG Xiaotian, CHEN Haiyan. Numerical simulation and analysis on separation performance of cyclone separator [J]. Chemical Industry and Engineering Progree, 2016, 35(05): 1360-1365. |
[11] | KONG Xianggong, CHEN Jiaqing, JI Yipeng, WANG Chunsheng, ZHANG Ming, SHANG Chao, CAI Xiaolei, LIU Meili. Numerical simulation of flow field and structural and operational parameters in a large capacity compact flotation unit(CFU) [J]. Chemical Industry and Engineering Progree, 2016, 35(03): 733-740. |
[12] | JIANGXu, WANG Cuiping, ZHANG Longlong. Numerical simulation and optimization on the performance of double-stage cyclone separator in coal-fueled CLC facility [J]. Chemical Industry and Engineering Progree, 2016, 35(02): 425-431. |
[13] | HAN Bai1,LIU Yongfei2,JIN Youhai2. Effect of air exhaust from side seam on uniflow type multicyclones [J]. Chemical Industry and Engineering Progree, 2014, 33(02): 323-327. |
[14] | YUAN Huixin,FANG Yi,FU Shuangcheng. Numerical simulation of the separation efficiency of natural gas dewaxing cyclone separator [J]. Chemical Industry and Engineering Progree, 2014, 33(01): 43-49. |
[15] | ZHAN Hao1,2,XU Chungang1,2,LI Xiaosen1,YAN Kefeng1. An experimental study on CO2 hydrate-based separation from flue gas with tetra-n-butyl ammonium bromide/cyclopentane solution [J]. Chemical Industry and Engineering Progree, 2012, 31(07): 1442-1448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |