Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (5): 2233-2244.DOI: 10.16085/j.issn.1000-6613.2022-1321
• Chemical processes and equipment • Previous Articles Next Articles
LING Shan(), LIU Juming, ZHANG Qiancheng, LI Yan()
Received:
2022-07-14
Revised:
2022-09-12
Online:
2023-06-02
Published:
2023-05-10
Contact:
LI Yan
通讯作者:
李艳
作者简介:
凌山(1998—),男,硕士研究生,研究方向为化工分离过程。E-mail:lingshan_tian@139.com。
基金资助:
CLC Number:
LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244.
凌山, 刘聚明, 张前程, 李艳. 模拟移动床分离过程及其优化方法研究进展[J]. 化工进展, 2023, 42(5): 2233-2244.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1321
1 | MARáZ A, KOVáCS Z, BENJAMINS E, et al. Recent developments in microbial production of high-purity galacto-oligosaccharides[J]. World Journal of Microbiology and Biotechnology, 2022, 38(6): 1-10. |
2 | JUZA M, MAZZOTTI M, MORBIDELLI M. Simulated moving-bed chromatography and its application to chirotechnology[J]. Trends in Biotechnology, 2000, 18(3): 108-118. |
3 | ZHANG Y, HIDAJAT K, RAY A K. Multi-objective optimization of simulated moving bed and Varicol processes for enantio-separation of racemic pindolol[J]. Separation and Purification Technology, 2009, 65(3): 311-321. |
4 | SONG Mingkai, CUI Linlin, KUANG Han, et al. Model-based design of an intermittent simulated moving bed process for recovering lactic acid from ternary mixture[J]. Journal of Chromatography A, 2018, 1562: 47-58. |
5 | YOUNGJIN K, TAEJONG K, CHANHO P, et al. Development of novel flow distribution apparatus for simulated moving bed to improve degree of mixing[J]. Computers & Chemical Engineering, 2022, 156: 107553. |
6 | BREVEGLIERI F, OTGONBAYAR T, MAZZOTTI M. Optimizing the yield of a pure enantiomer by integrating chiral SMB chromatography and racemization. part 2: Theory[J]. Industrial & Engineering Chemistry Research, 2021, 60(29): 10720-10735. |
7 | RAJENDRAN A, PAREDES G, MAZZOTTI M. Simulated moving bed chromatography for the separation of enantiomers[J]. Journal of Chromatography A, 2009, 1216(4): 709-738. |
8 | BROUGHTON D B. Production-scale adsorptive separations of liquid mixtures by simulated moving bed technology[J]. Separation Science and Technology, 1984, 19(11/12): 723-736. |
9 | MINCEVA M, RODRIGUES A E. Influence of the transfer line dead volume on the performance of an industrial scale simulated moving bed for p-xylene separation[J]. Separation Science and Technology, 2003, 38(7):1463-1497. |
10 | HONG S B, CHOI J H, PARK H, et al. Simulated moving bed purification of fucoidan hydrolysate for an efficient production of fucose with high purity and little loss[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 29-37. |
11 | LEE J W, KIENLE A, SEIDEL-MORGENSTERN A. On-line optimization of four-zone simulated moving bed chromatography using an equilibrium-dispersion model: II. Experimental validation[J]. Chemical Engineering Science, 2020, 226: 115808. |
12 | LIU Lina, HE Yingying, WANG Kai, et al. Metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity in mice fed with conjugated linoleic acid (CLA)[J]. Food & Function, 2020, 11(11): 9729-9739. |
13 | JO C Y, KANG H J, MUN S. Improving the performances of a simulated-moving-bed reactor for the synthesis of methyl acetate ester by using partial port-closing strategies[J]. Chemical Engineering Journal, 2022, 435: 134887. |
14 | 姚传义,郑震玮,涂志贤,等. 模拟移动床色谱分离吴茱萸碱和吴茱萸次碱[J]. 化工学报, 2021, 72(7): 3728-3737. |
YAO Chuanyi, ZHENG Zhenwei, TU Zhixian, et al. Separation of evodiamine and rutaecarpine with simulated moving bed chromatography[J]. CIESC Journal, 2021, 72(7): 3728-3737. | |
15 | ERDEM G, ABEL S, MORARI M, et al. Automatic control of simulated moving beds[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 405-421. |
16 | TOUMI A, ENGELL S, DIEHL M, et al. Efficient optimization of simulated moving bed processes[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(11): 1067-1084. |
17 | BORGES DA SILVA E A, RODRIGUES A E. Design of chromatographic multicomponent separation by a pseudo-simulated moving bed[J]. AIChE Journal, 2006, 52(11): 3794-3812. |
18 | GONG Rujin, LIN Xiaojian, LI Ping, et al. Experiment and modeling for the separation of guaifenesin enantiomers using simulated moving bed and Varicol units[J]. Journal of Chromatography A, 2014, 1363: 242-249. |
19 | LIN Xiaojian, GONG Rujian, LI Jiaxu, et al. Enantioseparation of racemic aminoglutethimide using asynchronous simulated moving bed chromatography[J]. Journal of Chromatography A, 2016, 1467: 347-355. |
20 | YAO Chanyi, CHEN Jinliang, LU Yinghua, et al. Construction of an asynchronous three-zone simulated-moving-bed chromatography and its application for the separation of vanillin and syringaldehyde[J]. Chemical Engineering Journal, 2018, 331: 644-651. |
21 | CALDERON SUPELANO R, BARRETO JR A G, ANDRADE NETO A S, et al. One-step optimization strategy in the simulated moving bed process with asynchronous movement of ports: A varicol case study[J]. Journal of Chromatography A, 2020, 1634: 461672. |
22 | CALDERÓN SUPELANO R, BARRETO A G, SECCHI A R. Optimal performance comparison of the simulated moving bed process variants based on the modulation of the length of zones and the feed concentration[J]. Journal of Chromatography A, 2021,1651: 462280. |
23 | MATOS J, FARIA R P V, LOUREIRO J M, et al. Design and optimization for simulated moving bed: varicol approach[J]. IFAC-PapersOnLine, 2021, 54(3): 542-547. |
24 | ANICETO J P S, SILVA C M. Simulated moving bed strategies and designs: From established systems to the latest developments[J]. Separation & Purification Reviews, 2015, 44(1): 41-73. |
25 | YU Yueying, WOOD K R, LIU Y A. Simulation and comparison of operational modes in simulated moving bed chromatography[J]. Industrial & Engineering Chemistry Research, 2015, 54(46): 11576-11591. |
26 | YANG Ying, LU Kai, GONG Rujin, et al. Separation of guaifenesin enantiomers by simulated moving bed process with four operation modes[J]. Adsorption, 2019, 25(6): 1227-1240. |
27 | DENET F, HAUCK W, NICOUD R M, et al. Enantioseparation through supercritical fluid simulated moving bed (SF-SMB) chromatography[J]. Industrial & Engineering Chemistry Research, 2001, 40(21): 4603-4609. |
28 | CâMARA L D T. Modifier mass transfer kinetic effect in the performance of solvent gradient simulated moving bed (SG-SMB) process[J]. Journal of Physics: Conference Series, 2015, 633(1): 012104. |
29 | 蒋晓霄. 温度梯度模拟移动床拆分酮洛芬对映体的过程研究[D]. 温州: 温州大学, 2017. |
JIANG Xiaoxiao. The study of separation process of ketoprofen enantiomers on temperature gradient of simulated moving bed[D]. Wenzhou: Wenzhou University, 2017. | |
30 | WEI Feng, SHI Licheng, WANG Qiang, et al. Fast and accurate separation of the paclitaxel from yew extracum by a pseudo simulated moving bed with solvent gradient[J]. Journal of Chromatography A, 2018, 1564: 120-127. |
31 | JIANG Xiaoxiao, ZHU Lei, YU Bei, et al. Analyses of simulated moving bed with internal temperature gradients for binary separation of ketoprofen enantiomers using multi-objective optimization: Linear equilibria[J]. Journal of Chromatography A, 2018, 1531: 131-142. |
32 | REINALDO CALDERÓN S, AMARO GOMES B, JR, ARGIMIRO RESENDE S. Evaluation of the optimal performance of ModiCon and ModiCon+VariCol simulated moving bed variants[J]. Journal of Chromatography A, 2022, 1675: 463182. |
33 | LI Yan, YU Weifang, DING Ziyuan, et al. Equilibrium and kinetic differences of XOS2-XOS7 in xylo-oligosaccharides and their effects on the design of simulated moving bed purification process[J]. Separation and Purification Technology, 2019, 215: 360-367. |
34 | 李良玉,孙蕊,李朝阳,等. 顺序式模拟移动色谱纯化木糖醇母液[J]. 天然产物研究与开发, 2015, 27(10): 1789-1793. |
LI Liangyu, SUN Rui, LI Chaoyang, et al. Purification of xylitol mother liquid using sequential simulated moving bed chromatography[J]. Natural Product Research and Development, 2015, 27(10): 1789-1793. | |
35 | LI Yan, DING Ziyuan, WANG Jian, et al. A comparison between simulated moving bed and sequential simulated moving bed system based on multi-objective optimization[J]. Chemical Engineering Science, 2020, 219: 115562. |
36 | LI Yan, XU Jin, YU Weifang, et al. Multi-objective optimization of sequential simulated moving bed for the purification of xylo-oligosaccharides[J]. Chemical Engineering Science, 2020, 211: 115279. |
37 | SANTOS DA SILVA F V, SEIDEL-MORGENSTERN A. Evaluation of center-cut separations applying simulated moving bed chromatography with 8 zones[J]. Journal of Chromatography A, 2016, 1456: 123-136. |
38 | SREEDHAR B, KAWAJIRI Y. Multi-column chromatographic process development using simulated moving bed superstructure and simultaneous optimization—Model correction framework[J]. Chemical Engineering Science, 2014, 116: 428-441. |
39 | YU Weifang, HIDAJAT K, RAY A K. Optimal operation of reactive simulated moving bed and Varicol systems[J]. Journal of Chemical Technology & Biotechnology, 2003, 78(2/3): 287-293. |
40 | WONGSO F, HIDAJAT K, RAY A. Improved performance for continuous separation of 1,1'-bi-2-naphthol racemate based on simulated moving bed technology[J]. Separation and Purification Technology, 2005, 46(3): 168-191. |
41 | TARAFDER A, RANGAIAH G P, RAY A K. A study of finding many desirable solutions in multiobjective optimization of chemical processes[J]. Computers & Chemical Engineering, 2007, 31(10): 1257-1271. |
42 | PARK H, KIM J W, LEE K B, et al. Comparison of the process performances of a tandem 4-zone SMB and a single-cascade 5-zone SMB for separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in agarose hydrolyzate[J]. Separation and Purification Technology, 2020, 237: 116357. |
43 | PEDEFERRI M, ZENONI G, MAZZOTTI M, et al. Experimental analysis of a chiral separation through simulated moving bed chromatography[J]. Chemical Engineering Science, 1999, 54(17): 3735-3748. |
44 | KASPEREIT M, SEIDEL-MORGENSTERN A, KIENLE A. Design of simulated moving bed processes under reduced purity requirements[J]. Journal of Chromatography A, 2007, 1162(1): 2-13. |
45 | KHATTABI S, CHERRAK D E, MIHLBACHLER K, et al. Enantioseparation of 1-phenyl-1-propanol by simulated moving bed under linear and nonlinear conditions[J]. Journal of Chromatography A, 2000, 893(2): 307-319. |
46 | LEE K. Effects of mass transfer on simulated moving bed process[J]. Korean Journal of Chemical Engineering, 2009, 26(2): 468-474. |
47 | LEE J W, KIENLE A, SEIDEL-MORGENSTERN A. Numerical short-cut design of simulated moving bed chromatography for multicomponent nonlinear adsorption isotherms: Nonstoichiometric Langmuir model[J]. Industrial & Engineering Chemistry Research, 2021, 60(29): 10753-10763. |
48 | SONG I H, LEE S B, RHEE H K, et al. Identification and predictive control of a simulated moving bed process: Purity control[J]. Chemical Engineering Science, 2006, 61(6): 1973-1986. |
49 | KHAN H. Simulation assessment of continuous simulating moving bed chromatography process with partial feed and new strategy with partial feed[J]. Brazilian Journal of Chemical Engineering, 2009, 26(3): 595-610. |
50 | SOEPRIATNA N, WANG N H L, WANKAT P C. Standing wave design of a four-zone thermal SMB fractionator and concentrator (4-zone TSMB-FC) for linear systems[J]. Adsorption, 2014, 20(1): 37-52. |
51 | MUN S. Effect of adsorbent particle size on the relative merits of a non-triangular and a triangular separation region in the optimal design of a three-zone simulated moving bed chromatography for binary separation with linear isotherms[J]. Journal of Chromatography A, 2016, 1452: 36-46. |
52 | YOON T H, CHUNG B H, KIM I H. A novel design of simulated moving bed(SMB) chromatography for separation of ketoprofen enantiomer[J]. Biotechnology and Bioprocess Engineering, 2004, 9(4): 285-291. |
53 | JERMANN S, MEIJSSEN M, MAZZOTTI M. Three column intermittent simulated moving bed chromatography: 3. Cascade operation for center-cut separations[J]. Journal of Chromatography A, 2015, 1378: 37-49. |
54 | ANICETO J P S, AZENHA I S, DOMINGUES F M J, et al. Design and optimization of a simulated moving bed unit for the separation of betulinic, oleanolic and ursolic acids mixtures: Experimental and modeling studies[J]. Separation and Purification Technology, 2018, 192: 401-411. |
55 | WEI Bofeng, WANG Shaoyan. Separation of eicosapentaenoic acid and docosahexaenoic acid by three-zone simulated moving bed chromatography[J]. Journal of Chromatography A, 2020, 1625: 461326. |
56 | HOUWING J, BILLIET H A H, VAN DER WIELEN L A M. Optimization of azeotropic protein separations in gradient and isocratic ion-exchange simulated moving bed chromatography[J]. Journal of Chromatography A, 2002, 944(1/2): 189-201. |
57 | PARK B J, LEE C H, KOO Y M. Development of novel protein refolding using simulated moving bed chromatography[J]. Korean Journal of Chemical Engineering, 2005, 22(3): 425-432. |
58 | MUELLER I, SEIDEL-MORGENSTERN A, HAMEL C. Simulated-moving-bed technology for purification of the prebiotics galacto-oligosaccharides[J]. Separation and Purification Technology, 2021, 271: 118829. |
59 | ANICETO J P S, CARDOSO S P, SILVA C M. General optimization strategy of simulated moving bed units through design of experiments and response surface methodologies[J]. Computers & Chemical Engineering, 2016, 90: 161-170. |
60 | HE Q, LIERES E V, SUN Z, et al. Model-based process design of a ternary protein separation using multi-step gradient ion-exchange SMB chromatography[J]. Computers & Chemical Engineering, 2020, 138: 106851. |
61 | URIBE SANTOS D L, DELGADO DOBLADEZ J A, ÁGUEDA MATé V I, et al. Recovery and purification of acetic acid from aqueous mixtures by simulated moving bed adsorption with methanol and water as desorbents[J]. Separation and Purification Technology, 2020, 237: 116368. |
62 | DELGADO J A, ÁGUEDA V I, UGUINA M Á, et al. Modeling of the separation of lactic acid from an aqueous mixture by adsorption on polyvinylpyridine resin and desorption with methanol[J]. Separation and Purification Technology, 2018, 200: 307-317. |
63 | GILL P E, ROBINSON D P. A globally convergent stabilized SQP method[J]. SIAM Journal on Optimization, 2013, 23(4): 1983-2010. |
64 | BOGGS P T, TOLLE J W. Sequential quadratic programming[J]. Acta Numerica, 1995, 4(1): 1-51. |
65 | SHEN Yuanhui, FU Qiang, ZHANG Donghui, et al. A systematic simulation and optimization of an industrial-scale p-xylene simulated moving bed process[J]. Separation and Purification Technology, 2018, 191:48-60. |
66 | SHAHMORADI A, KHOSRAVI-NIKOU M R, AGHAJANI M, et al. Mathematical modeling and optimization of industrial scale ELUXYL simulated moving bed (SMB)[J]. Separation and Purification Technology, 2020, 248: 116961. |
67 | Y-I LIM. An optimization strategy for nonlinear simulated moving bed chromatography: Multi-level optimization procedure (MLOP)[J]. Korean Journal of Chemical Engineering, 2004, 21(4): 836-852. |
68 | WU D-J, XIE Y, MA Z, et al. Design of simulated moving bed chromatography for amino acid separations[J]. Industrial & Engineering Chemistry Research, 1998, 37(10): 4023-4035. |
69 | HRITZKO B J, XIE Y, WOOLEY R J, et al. Standing-wave design of tandem SMB for linear multicomponent systems[J]. AIChE Journal, 2002, 48(12): 2769-2787. |
70 | HARVEY D, WEEDEN G, WANG N-H L. Speedy standing wave design and simulated moving bed splitting strategies for the separation of ternary mixtures with linear isotherms[J]. Journal of Chromatography A, 2017, 1530: 152-170. |
71 | LEE C-G, JO C Y, LEE K B, et al. Optimization of a simulated-moving-bed process for continuous separation of racemic and meso-2,3-butanediol using an efficient optimization tool based on nonlinear standing-wave-design method[J]. Separation and Purification Technology, 2021, 254: 117597. |
72 | SOEPRIATNA N, WANG N H L, WANKAT P C. Standing wave design and optimization of nonlinear four-zone thermal simulated moving bed systems[J]. Industrial & Engineering Chemistry Research, 2015, 54(42): 10419-10433. |
73 | KIM Seul-Gi, Hee-Geun NAM, KIM Jin-Hyun, et al. Optimal design of a four-zone simulated moving bed process for separation of homoharringtonine and harringtonine[J]. The Canadian Journal of Chemical Engineering, 2011, 89(2): 304-313. |
74 | HARVEY D, DING Y, WANG N-H L. Standing-wave design of Three-Zone, open-loop non-isocratic SMB for purification[J]. BMC Chemical Engineering, 2019, 1(1): 1-18. |
75 | XIE Y, FARRENBURG C A, CHIN C Y, et al. Design of SMB for a nonlinear amino acid system with mass-transfer effects[J]. AIChE Journal, 2003, 49(11): 2850-2863. |
76 | XIE Y, WU D, MA Z, et al. Extended standing wave design method for simulated moving bed chromatography: Linear systems[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1993-2005. |
77 | LEE C-G, J-H CHOI, PARK C, et al. Standing wave design and optimization of a simulated moving bed chromatography for separation of xylobiose and xylose under the constraints on product concentration and pressure drop[J]. Journal of Chromatography A, 2017, 1527: 80-90. |
78 | MUN S. Optimization of production rate, productivity, and product concentration for a simulated moving bed process aimed atfucose separation using standing-wave-design and genetic algorithm[J]. Journal of Chromatography A, 2018, 1575: 113-121. |
79 | PARK H, JO C Y, LEE K B, et al. Standing wave design and optimization of a tandem size-exclusion simulated moving bed process for high-throughput recovery of neoagarohexaose from neoagarooligosaccharides[J]. Separation and Purification Technology, 2021, 276: 119039. |
80 | LEE H-J, XIE Y, Y-M KOO, et al. Separation of lactic acid from acetic acid using a four-zone SMB[J]. Biotechnology Progress, 2004, 20(1): 179-192. |
81 | H-G NAM, S-H JO, MUN S. Comparison of Amberchrom-CG161C and Dowex99 as the adsorbent of a four-zone simulated moving bed process for removal of acetic acid from biomass hydrolyzate[J]. Process Biochemistry, 2011, 46(10): 2044-2053. |
82 | NAM H G, HAN M G, YI S C, et al. Optimization of productivity in a four-zone simulated moving bed process for separation of succinic acid and lactic acid[J]. Chemical Engineering Journal, 2011, 171(1): 92-103. |
83 | AZEVEDO D C S, RODRIGUES A E. Design of a simulated moving bed in the presence of mass-transfer resistances[J]. AIChE Journal, 1999, 45(5): 956-966. |
84 | SILVA V M T, MINCEVA M, RODRIGUES A E. Novel analytical solution for a simulated moving bed in the presence of mass-transfer resistance[J]. Industrial & Engineering Chemistry Research, 2004, 43(16): 4494-4502. |
85 | ZABKA M, MINCEVA M, Sá GOMES P, et al. Chiral separation of R,S-α-tetralol by simulated moving bed[J]. Separation Science and Technology, 2008, 43(4): 727-765. |
86 | URIBE SANTOS D L, DELGADO J A, ÁGUEDA V I, et al. Recovery of a succinic, formic, and acetic acid mixture from a model fermentation broth by simulated moving bed adsorption with methanol as a desorbent[J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 672-683. |
87 | AZEVEDO D C S, RODRIGUES A E. Fructose–glucose separation in a SMB pilot unit: Modeling, simulation, design, and operation[J]. AIChE Journal, 2001, 47(9): 2042-2051. |
88 | BORGES DA SILVA E A, PEDRUZZI I, RODRIGUES A E. Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol[J]. Adsorption, 2011, 17(1): 145-158. |
89 | MINCEVA M, RODRIGUES A E. Modeling and simulation of a simulated moving bed for the separation of p-xylene[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3454-3461. |
90 | MINCEVA M, RODRIGUES A E. Two-level optimization of an existing SMB for p-xylene separation[J]. Computers & Chemical Engineering, 2005, 29(10): 2215-2228. |
91 | LEHOUCQ S, VERHèVE D, VANDE WOUWER A, et al. SMB enantioseparation: Process development, modeling, and operating conditions[J]. AIChE Journal, 2000, 46(2): 247-256. |
92 | RODRIGUES A E, PAIS L S. Design of SMB chiral separations using the concept of separation volume[J]. Separation Science and Technology, 2005, 39(2): 245-270. |
93 | GOLDBERG D E. Genetic algorithm in search, optimization, and machine learning[M]. Reading, Mass: Addison-Wesley Publishing Co., 1989. |
94 | REED P, MINSKER B S, GOLDBERG D E. A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data[J]. Journal of Hydroinformatics, 2001, 3(2): 71-89. |
95 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
96 | KASAT R B, GUPTA S K. Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit(FCCU) using genetic algorithm (GA) with the jumping genes operator[J]. Computers & Chemical Engineering, 2003, 27(12): 1785-1800. |
97 | 吴献东,金晓明,苏宏业.基于NSGA-Ⅱ的模拟移动床色谱分离过程多目标操作优化[J]. 化工学报, 2007, 58(8): 2038-2044. |
WU Xiandong, JIN Xiaoming, SU Hongye. Multi-objective optimization of simulated moving bed chromatography separation based on NSGA- Ⅱ algorithm[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(8): 2038-2044. | |
98 | WANG J, TIAN Y M, LI Y, et al. Multi-objective optimization of non-isothermal simulated moving bed reactor: methyl acetate synthesis[J]. Chemical Engineering Journal, 2020, 395: 125041. |
99 | 朱磊,徐进,孙玉高,等.逆向法测定酮洛芬对映体在Chiralpak AD柱上的吸附等温线[J]. 化工学报, 2012, 63(8): 2469-2476. |
ZHU Lei, XU Jin, SUN Yugao, et al. Determination of adsorption isotherms of ketoprofen enantiomers on Chiralpak AD column by inverse method[J]. CIESC Journal, 2012, 63(8): 2469-2476. | |
100 | WAGNER N, HAKANSSON E, WAHLER S, et al. Multi-objective optimization for the economic production of D-psicose using simulated moving bed chromatography[J]. Journal of Chromatography A, 2015, 1398: 47-56. |
101 | KIM P H, NAM H G, PARK C, et al. Simulated moving bed separation of agarose-hydrolyzate components for biofuel production from marine biomass [J]. Journal of Chromatography A, 2015, 1406: 231-243. |
102 | ZHANG Z, LIAO C J, CHAI H, et al. Multi-objective optimization of controllable configurations for bistable laminates using NSGA-Ⅱ[J]. Composite Structures, 2021, 266: 113764. |
103 | 路艳雪,赵超凡,吴晓锋,等. 基于改进的NSGA-Ⅱ多目标优化方法研究[J]. 计算机应用研究, 2018, 35(6): 1733-1737. |
LU Yanxue, ZHAO Chaofan, WU Xiaofeng, et al. Multi-objective optimization method research based on improved NSGA-Ⅱ[J]. Application Research of Computers, 2018, 35(6): 1733-1737. |
[1] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[2] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[3] | DAI Min, YANG Fusheng, ZHANG Zaoxiao, LIU Guilian, FENG Xiao. 3E Multi-objective optimization of hexane oil distillation process based on multi-strategy ensemble optimization algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2852-2863. |
[4] | LI Dan, YANG Siyu, QIAN Yu. Syngas cryogenic separation process combined with lithium bromide absorption refrigeration and organic Rankine cycle [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5236-5246. |
[5] | Ning JIANG, Shichao ZHAO, Xiaodong XIE, Wei FAN, Xinjie XU, Yingjie XU. Retrofit of heat integrated system of crude oil distillation system with multi-energy complementation by waste heat recovery [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 652-663. |
[6] | TIAN Chang, SU Mingxu, JIANG Yu, XIA Duobing. Method and device for on-line measurement of particle size distribution and density of desulfurization slurry by ultrasonic [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6516-6522. |
[7] | Gongchu SHI, Yalong LIAO, Bowen SU, Yu ZHANG, Jiajun XI. Multi-objective optimization of pressure oxidative selective leaching of copper smelting slag by response surface methodology [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 270-280. |
[8] | Jiangwei XIE, Chunli LI, Guoming HUANG. Structural optimization of dividing wall column using response surface methodology coupled with NSGA-Ⅱ algorithm [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 2962-2971. |
[9] | Jingkang ZHANG, Haiqing WANG, Weiwei JIANG, Xinge QI. Optimal placement of gas detector based on unavailability and voting logic [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2503-2509. |
[10] | ZHANG Shen, GAO Wei, QI Ming, YU Wenhao, WANG Honghai. A review of optimization rectification systems based on multi-objective [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 1-9. |
[11] | Hongshan BAI,Dongya ZHAO,Qunhong TIAN,Qi WANG,Shijian LU,Zhongde YANG,Jianping YANG. Stochastic optimization of the whole process of CO2 capture, transportation, utilization and sequestration [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4911-4920. |
[12] | Ning JIANG,Xiaodong XIE,Wei FAN,Yingjie XU. Data-driven optimization retrofit method with fixed topology structure for heat exchanger network [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4452-4460. |
[13] | Ning JIANG, Fengyuan GUO, Wenqiao HAN, Huajing LIU, Lu LIN. 3E Optimization of heat exchanger network system based on non-counterflow heat transfer [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 761-771. |
[14] | JIANG Ning, HAN Wenqiao, GUO Fengyuan, XU Yingjie. Optimization of heat exchanger network retrofit based on actual heat load distribution [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 2935-2941. |
[15] | JIANG Ning, YU Hangsheng, HAN Wenqiao. Retrofit of heat exchanger network based on exchanger reassignment and genetic algorithm (GA) [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2830-2837. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |