1 |
Centre for Science and Environment. IPCC’s Special Report on Global Warming of 1.5℃[R]. 2018.
|
2 |
网易. 全球首个“碳关税”即将到来,中国企业准备好了吗?[A/OL]. [2022-04-11]. .
|
3 |
黄晟, 王静宇, 李振宇. 碳中和目标下石油与化学工业绿色低碳发展路径分析[J]. 化工进展, 2022, 41(4): 1689-1703.
|
|
HUANG Sheng, WANG Jingyu, LI Zhenyu. Analysis of green and low-carbon development path of petroleum and chemical industry under the goal of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1689-1703.
|
4 |
ČUČEK L, KLEMEŠ J J, KRAVANJA Z. A review of Footprint analysis tools for monitoring impacts on sustainability[J]. Journal of Cleaner Production, 2012, 34: 9-20.
|
5 |
TAGLIAFERRI C, EVANGELISTI S, ACCONCIA F, et al. Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach[J]. Chemical Engineering Research and Design, 2016, 112: 298-309.
|
6 |
PANZONE L A, ULPH A, HILTON D, et al. Sustainable by design: Choice architecture and the carbon footprint of grocery shopping[J]. Journal of Public Policy & Marketing, 2021, 40(4): 463-486.
|
7 |
王雅君, 孙光亚, 安攀, 等. 生命周期评价在轻工行业的应用及研究进展[J]. 福建师范大学学报(自然科学版), 2022, 38(4): 20-31.
|
|
WANG Yajun, SUN Guangya, AN Pan, et al. Application and research progress of life cycle assessment in light industry[J]. Journal of Fujian Normal University (Natural Science Edition), 2022, 38(4): 20-31.
|
8 |
潘竟虎, 张永年. 中国能源碳足迹时空格局演化及脱钩效应[J]. 地理学报, 2021, 76(1): 206-222.
|
|
PAN Jinghu, ZHANG Yongnian. Spatiotemporal patterns of energy carbon footprint and decoupling effect in China[J]. Acta Geographica Sinica, 2021, 76(1): 206-222.
|
9 |
刘涛, 刘颖昊, 周烨. 生命周期评价方法在钢铁企业低碳发展规划中的应用[J]. 中国冶金, 2021, 31(9): 130-134.
|
|
LIU Tao, LIU Yinghao, ZHOU Ye. Application of life cycle assessment in low-carbon planning of iron and steel company[J]. China Metallurgy, 2021, 31(9): 130-134.
|
10 |
Carbon footprints in the supply chain: The next step for business[R]. London: The Carbon Trust, 2006.
|
11 |
GRUBB E. Meeting the carbon challenge: The role of commercial real estate owners, users &managers[R]. Chicago, USA, 2007.
|
12 |
WIEDMANN T, MINX J. A definition of “Carbon Footprint” [M]. New York: Nova Science Publishers, 2007.
|
13 |
HAMMOND G. Time to give due weight to the ‘carbon footprint’ issue[J]. Nature, 2007, 445(7125): 256.
|
14 |
BROWNE D, O’REGAN B, MOLES R. Use of carbon footprinting to explore alternative household waste policy scenarios in an Irish City-region[J]. Resources, Conservation and Recycling, 2009, 54(2): 113-122.
|
15 |
WIEDMANN T, BARRETT J. A review of the ecological footprint indicator—perceptions and methods[J]. Sustainability, 2010, 2(6): 1645-1693.
|
16 |
ALLEN S, PENTLAND C. Carbon footprint of electricity generation[N].: Post Note Update, 2011.
|
17 |
PANDEY D, AGRAWAL M, PANDEY J S. Carbon footprint: Current methods of estimation[J]. Environmental Monitoring and Assessment, 2011, 178(1/2/3/4): 135-160.
|
18 |
AICHELE R, FELBERMAYR G. Kyoto and the carbon footprint of nations[J]. Journal of Environmental Economics and Management, 2012, 63(3): 336-354.
|
19 |
PANDEY D, AGRAWAL M. Carbon footprint estimation in the agriculture sector[M]//Assessment of carbon footprint in different industrial sectors. Anonymous Springer, 2014.
|
20 |
柯水发. 北京市碳足迹影响因素、削减潜力及低碳发展策略研究[M]. 北京: 人民日报出版社, 2015.
|
|
KE Shuifa. Study on influencing factors, reduction potential and low-carbon development strategy of Beijing’s carbon footprint[M]. Bejing: People’s Daily Publishing House, 2015.
|
21 |
高成康, 陈杉, 陈胜, 等. 中国典型钢铁联合企业的碳足迹分析[J]. 钢铁, 2015, 50(3): 1-8.
|
|
GAO Chengkang, CHEN Shan, CHEN Sheng, et al. Carbon footprint analysis of typical Chinese iron and steel enterprises[J]. Iron & Steel, 2015, 50(3): 1-8.
|
22 |
MCAUSLAND C, NAJJAR N. Carbon footprint Taxes[J]. Environmental and Resource Economics, 2015, 61(1): 37-70.
|
23 |
ZHAO Rui, XU Yao, WEN Xiangyu, et al. Carbon footprint assessment for a local branded pure milk product: A lifecycle based approach[J]. Food Science and Technology, 2017, 38(1): 98-105.
|
24 |
崔文超, 焦雯珺, 闵庆文, 等. 基于碳足迹的传统农业系统环境影响评价——以青田稻鱼共生系统为例[J]. 生态学报, 2020, 40(13): 4362-4370.
|
|
CUI Wenchao, JIAO Wenjun, MIN Qingwen, et al. Environmental impact assessment on traditional agricultural systems based on carbon footprint: A case study of Qingtian rice-fish culture system[J]. Acta Ecologica Sinica, 2020, 40(13): 4362-4370.
|
25 |
OMONIYI Durojaye, TIMOTHY Laseinde, IFETAYO Oluwafemi. A descriptive review of carbon footprint[M]//Advances in Intelligent Systems and Computing,2021.
|
26 |
MATTHEWS H S, HENDRICKSON C T, WEBER C L. The importance of carbon footprint estimation boundaries[J]. Environmental Science & Technology, 2008, 42(16): 5839-5842.
|
27 |
FRIEDRICH E, PILLAY S, BUCKLEY C A. Carbon footprint analysis for increasing water supply and sanitation in South Africa: A case study[J]. Journal of Cleaner Production, 2009, 17(1): 1-12.
|
28 |
BARTHELMIE R J, MORRIS S D, SCHECHTER P. Carbon neutral Biggar: Calculating the community carbon footprint and renewable energy options for footprint reduction[J]. Sustainability Science, 2008, 3(2): 267-282.
|
29 |
. 电子信息产品碳足迹核算指南 [S]. 北京:北京市质量技术监督局, 2021.
|
|
. Guidelines for carbon footprint accounting for electronic information products [S].Beijing: Beijing Municipal Bureau of Quality and Technical Supervision.2021.
|
30 |
T/ . 香榧与香榧加工产品碳足迹量化与评价方法[S]. 北京:中国工业节能与清洁生产协会, 2022.
|
|
T/ . Quantification and evaluation method of Torreya grandis and Torreya grandis processed products[S].Beijing: China Industrial Energy Conservation and Cleaner Production Association, 2022.
|
31 |
张琦峰, 方恺, 徐明, 等. 基于投入产出分析的碳足迹研究进展[J]. 自然资源学报, 2018, 33(4): 696-708.
|
|
ZHANG Qifeng, FANG Kai, XU Ming, et al. Review of carbon footprint research based on input-output analysis[J]. Journal of Natural Resources, 2018, 33(4): 696-708.
|
32 |
董会娟, 耿涌. 基于投入产出分析的北京市居民消费碳足迹研究[J]. 资源科学, 2012, 34(3): 494-501.
|
|
DONG Huijuan, GENG Yong. Study on carbon footprint of the household consumption in Beijing based on input-output analysis[J]. Resources Science, 2012, 34(3): 494-501.
|
33 |
HASEGAWA R, KAGAWA S, TSUKUI M. Carbon footprint analysis through constructing a multi-region input-output table: A case study of Japan[J]. Journal of Economic Structures, 2015, 4: 5.
|
34 |
WEBER C L, MATTHEWS H S. Quantifying the global and distributional aspects of American household carbon footprint[J]. Ecological Economics, 2008, 66(2/3): 379-391.
|
35 |
付伟, 罗明灿, 陈建成. 碳足迹及其影响因素研究进展与展望[J]. 林业经济, 2021, 43(8): 39-49.
|
|
FU Wei, LUO Mingcan, CHEN Jiancheng. Research progress and prospects of carbon footprint and its influencing factors[J]. Forestry Economics, 2021, 43(8): 39-49.
|
36 |
碳足迹的概念、核算及标准[EB/OL]. [2022-07-26]..
|
|
Concept, accounting, and standards of the carbon footprint[EB/OL]. [2022-07-26]..
|
37 |
WU Peng, LOW S P, XIA Bo, et al. Achieving transparency in carbon labelling for construction materials—Lessons from current assessment standards and carbon labels[J]. Environmental Science & Policy, 2014, 44: 11-25.
|
38 |
LIU Tiantian, WANG Qunwei, SU Bin. A review of carbon labeling: Standards, implementation, and impact[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 68-79.
|
39 |
WU Peng, XIA Bo, WANG Xiangyu. The contribution of ISO 14067 to the evolution of global greenhouse gas standards—A review[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 142-150.
|
40 |
BRENTON P, EDWARDS-JONES G, JENSEN M F. Carbon labelling and low-income country exports: A review of the development issues[J]. Development Policy Review, 2009, 27(3): 243-267.
|
41 |
SHI X. Carbon footprint labeling activities in the East Asia summit region: Spillover effects to less developed countries (No.DP-2010-06) [Z]. Economic Research Institute for ASEAN and East Asia (ERIA), 2010.
|
42 |
MA A J, ZHAO H Z, REN F Z. Study on food life cycle carbon emissions assessment[J]. Procedia Environmental Sciences, 2010, 2: 1983-1987.
|
43 |
王瑞蕴, 李晋梅, 李保金, 等., 浅析水泥碳足迹与碳核查的区别与联系[J]. 中国水泥, 2020 (8): 115-118.
|
|
WANG Ruiyun, LI Jinmei, LI Baojin, et. The difference and connection between cement carbon footprint and carbon verification [J]. China cement, 2020 (8): 115-118.
|
44 |
MULROW J, MACHAJ K, DEANES J, et al. The state of carbon footprint calculators: An evaluation of calculator design and user interaction features[J]. Sustainable Production and Consumption, 2019, 18: 33-40.
|
45 |
Mariette JÉRÔME, ODILE Blanchard, OLIVIER Berné, et al. An open-source tool to assess the carbon footprint of research[J]. Environmental Research: Infrastructure and Sustainability, 2022, 4 (2):1-17.
|
46 |
彭鑫. 基于碳足迹特征的机电产品方案设计建模及碳足迹评价研究[D]. 济南: 山东大学, 2019.
|
|
PENG Xin. Research on scheme design modeling and carbon footprint evaluation of mechatronics products based on carbon footprint characteristics[D]. Jinan: Shandong University, 2019.
|
47 |
陈炜明. 全球贸易及其结构变化对各国经济和资源环境影响研究[D]. 北京: 中国地质大学(北京), 2019.
|
|
CHEN Weiming. Study on the impact of global trade and its structure change on national economy and environment[D]. Beijing: China University of Geosciences, 2019.
|
48 |
彭渤. 绿色建筑全生命周期能耗及二氧化碳排放案例研究[D]. 北京: 清华大学, 2012.
|
|
PENG Bo. Case study on life cycle energy consumption and CO2Emissions of green buildings[D]. Beijing: Tsinghua University, 2012.
|
49 |
沈思勋. 制造企业信息系统中产品碳足迹数据挖掘及其应用[D]. 杭州: 浙江理工大学, 2019.
|
|
SHEN Sixun. Product carbon footprint data mining and its application in manufacturing enterprise information system[D]. Hangzhou: Zhejiang Sci-Tech University, 2019.
|
50 |
浙江菲达环保科技股份有限公司. 香榧油碳足迹研究报告[A/OL].[2022-01-10]. .
|
|
Zhejiang Feida Environmental Protection Technology Co., Ltd.. Torreya grandis oil carbon footprint study report[A/OL].[2022-01-10]. .
|
51 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 钢铁产品制造生命周期评价技术规范: [S]. 北京: 中国标准出版社, 2014.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Life cycle assessment specification on steel products(Product category rules): [S]. Beijing: Standards Press of China, 2014.
|
52 |
侯萍, 王洪涛, 张浩, 等. 用于组织和产品碳足迹的中国电力温室气体排放因子[J]. 中国环境科学, 2012, 32(6): 961-967.
|
|
HOU Ping, WANG Hongtao, ZHANG Hao, et al. GreenHouse gas emission factors of Chinese power grids for organization and product carbon footprint[J]. China Environmental Science, 2012, 32(6): 961-967.
|
53 |
方恺, 朱晓娟, 高凯, 等. 全球电力碳足迹及其当量因子测算[J]. 生态学杂志, 2012, 31(12): 3160-3166.
|
|
FANG Kai, ZHU Xiaojuan, GAO Kai, et al. Carbon footprint of global electricity and its equivalent calculation[J]. Chinese Journal of Ecology, 2012, 31(12): 3160-3166.
|
54 |
刘韵, 师华定, 曾贤刚. 基于全生命周期评价的电力企业碳足迹评估——以山西省吕梁市某燃煤电厂为例[J]. 资源科学, 2011, 33(4): 653-658.
|
|
LIU Yun, SHI Huading, ZENG Xiangang. A life-cycle carbon footprint assessment of electric power companies[J]. Resources Science, 2011, 33(4): 653-658.
|
55 |
娄兰兰. 基于能源利用的中国热电行业碳足迹研究[D]. 大连: 大连理工大学, 2014.
|
|
LOU Lanlan. Analysis on carbon footprint of China's thermal power industry based on energy utilization[D]. Dalian: Dalian University of Technology, 2014.
|
56 |
LIAO X, JI J, MA X. Consistency analysis between technology plans and reduction target on CO2 emission from China’s power sector in 2020[J]. China Environ. Sci., 2013,3: 553-559.
|
57 |
WANG Ning, REN Yixin, ZHU Tao, et al. Life cycle carbon emission modelling of coal-fired power: Chinese case[J]. Energy, 2018, 162: 841-852.
|
58 |
SUN Boxue, GONG Xianzheng, LIU Yu, et al. Matrix-based model of the carbon footprint analysis for thermal power generation in China[J]. Materials Science Forum, 2011, 685: 230-238.
|
59 |
IEA. CO emissions from fuel combustion highlights. 2017[EB/OL]. .
|
60 |
Carbon Footprint Ltd. Free Carbon Calculators. 2018 [EB/OL]. .
|
61 |
MITTAL M L, SHARMA C, SINGH R. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India[J]. Environmental Monitoring and Assessment, 2014, 186(10): 6857-6866.
|
62 |
ODEH N A, COCKERILL T T. Life cycle analysis of UK coal fired power plants[J]. Energy Conversion and Management, 2008, 49(2): 212-220.
|
63 |
MESSAGIE M, MERTENS J, OLIVEIRA L, et al. The hourly life cycle carbon footprint of electricity generation in Belgium, bringing a temporal resolution in life cycle assessment[J]. Applied Energy, 2014, 134: 469-476.
|
64 |
SANTOYO-CASTELAZO E, GUJBA H, AZAPAGIC A. Life cycle assessment of electricity generation in Mexico[J]. Energy, 2011, 36(3): 1488-1499.
|
65 |
DALIR F, SHAFIEPOUR MOTLAGH M, ASHRAFI K. A well to wire LCA model development and sensitivity analysis for carbon footprint of combined cycle power plants in Iranian electricity network[J]. International Journal of Green Energy, 2017, 14(5): 499-508.
|
66 |
ANDRIĆ I, JAMALI-ZGHAL N, SANTARELLI M, et al. Environmental performance assessment of retrofitting existing coal fired power plants to co-firing with biomass: Carbon footprint and emergy approach[J]. Journal of Cleaner Production, 2015, 103: 13-27.
|
67 |
梁聪智. 我国钢铁行业碳足迹与碳排放影响因素分析[D]. 秦皇岛: 燕山大学, 2012.
|
|
LIANG Congzhi. Analysis of Chinese iron and steel industry carbon footprint and carbon emissions impact factors[D]. Qinhuangdao: Yanshan University, 2012.
|
68 |
张玥, 王让会, 刘飞. 钢铁生产过程碳足迹研究——以南京钢铁联合有限公司为例[J]. 环境科学学报, 2013, 33(4): 1195-1201.
|
|
ZHANG Yue, WANG Ranghui, LIU Fei. Carbon footprint on steel manufacturing process—A case study of Nanjing Iron & Steel Union Company Limited[J]. Acta Scientiae Circumstantiae, 2013, 33(4): 1195-1201.
|
69 |
徐匡迪. 低碳经济与钢铁工业[J]. 钢铁, 2010, 45(3): 1-12.
|
|
XU Kuangdi. Low carbon economy and iron and steel industry[J]. Iron & Steel, 2010, 45(3): 1-12.
|
70 |
刘宏强, 付建勋, 刘思雨, 等. 钢铁生产过程二氧化碳排放计算方法与实践[J]. 钢铁, 2016, 51(4): 74-82.
|
|
LIU Hongqiang, FU Jianxun, LIU Siyu, et al. Calculation methods and application of carbon dioxide emission during steel-making process[J]. Iron & Steel, 2016, 51(4): 74-82.
|
71 |
MENG Hua, WANG Weixin. Definition method for carbon footprint of iron and steel energy supply chain based on relational dispersed degree[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(6): 7407-7416.
|
72 |
Wei LYU, SUN Zengqing, SU Zijian. Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study[J]. Journal of Cleaner Production, 2019, 233: 1314-1321.
|
73 |
World Steel Association (2012) sustainable steel, at the core of a green economy[R]. Brussels: World Steel Association, 2012.
|
74 |
2020 Life cycle inventory study report[R]. Brussels: World Steel Association, 2020.
|
75 |
IEA. Tracking industrial energy efficiency and CO2 emissions[R]. Paris: OECD/IEA, 2007.
|
76 |
IEA. Iron and steel technology roadmap-towards more sustainable steelmaking[R]. Paris: OECD, 2020: 8–43.
|
77 |
CONEJO A N, BIRAT J P, DUTTA A. A review of the current environmental challenges of the steel industry and its value chain[J]. Journal of Environmental Management, 2020, 259: 109782.
|
78 |
SUER Julian, TRAVERSO M, AHRENHOLD F. Carbon footprint of scenarios towards climate-neutral steel according to ISO 14067[J]. Journal of Cleaner Production, 2021, 318: 128588.
|
79 |
LISIENKO V G, CHESNOKOV Y N, LAPTEVA A V. Application of the triad of blast furnace, oxygen converter, and electric arc furnace for reducing of carbon footprint[J]. Steel in Translation, 2017, 47(8): 523-527.
|
80 |
JHA G, SOREN S, MEHTA K D. Life cycle assessment of sintering process for carbon footprint and cost reduction: A comparative study for coke and biomass-derived sintering process[J]. Journal of Cleaner Production, 2020, 259: 120889.
|
81 |
DEVASAHAYAM S. Review: Opportunities for simultaneous energy/materials conversion of carbon dioxide and plastics in metallurgical processes[J]. Sustainable Materials and Technologies, 2019, 22: e00119.
|
82 |
GHANBARI H, SAXÉN H, GROSSMANN I E. Optimal design and operation of a steel plant integrated with a polygeneration system[J]. AIChE Journal, 2013, 59(10): 3659-3670.
|
83 |
SCHMÖLE P. The blast furnace-fit for the future? [J]. Stahl. und Eisen., 2016, 136:31–40.
|
84 |
李晓鹏, 孙晓峰, 李键. 水泥企业碳足迹初探[J]. 中国建材科技, 2010, 19(6): 18-19, 40.
|
|
LI Xiaopeng, SUN Xiaofeng, LI Jian. The primary research on carbon footprint for cement enterprises[J]. China Building Materials Science & Technology, 2010, 19(6): 18-19, 40.
|
85 |
姜睿,王洪涛 .中国水泥工业的生命周期评价[J].化学工程与装备,2010(4):183-187.
|
|
JIANG Rui, WANG Hongtao. Life cycle assessment of China's cement industry [J]. Chemical Engineering & Equipment,2010(4):183-187.
|
86 |
白文琦, 杜强, 吕晶, 等. 通用硅酸盐水泥生产的碳足迹研究[J]. 西安工程大学学报, 2013, 27(4): 472-476.
|
|
BAI Wenqi, DU Qiang, Jing LYU, et al. Research on the carbon footprint in the production of common Portland cement[J]. Journal of Xi’an Polytechnic University, 2013, 27(4): 472-476.
|
87 |
秦于茜. 水泥产品碳足迹核算研究[D]. 西安: 西安理工大学, 2020.
|
|
QIN Yuqian|. Research on accounting of carbon footprint of cement products[D]. Xi'an: Xi’an University of Technology, 2020.
|
88 |
杨李宁,付祥钊 .以重庆为案例的水泥碳足迹研究[J]. 中国水泥,2016, 27(8):87-92.
|
|
YANG Lining,FU Xiangzhao,A case study of cement carbon footprint in Chongqing [J]. China Cement,2016, 27(8):87-92.
|
89 |
SHEN Weiguo, CAO Liu, LI Qiu, et al. Is magnesia cement low carbon? Life cycle carbon footprint comparing with Portland cement[J]. Journal of Cleaner Production, 2016, 131: 20-27.
|
90 |
ZHANG J L, CHENG J C P, LO I M C. Life cycle carbon footprint measurement of Portland cement and ready mix concrete for a city with local scarcity of resources like Hong Kong[J]. The International Journal of Life Cycle Assessment, 2014, 19(4): 745-757.
|
91 |
CSI (2009) Cement industry energy and CO2 performance, getting the numbers right. Concrete sustainability initiative[M]// World Business Council for Sustainable Development. ISBN 978-3-940388-48-3.
|
92 |
ERNST Worrell, LYNN Price, NATHAN Martin,et al. Carbon dioxide emissions from the global cement industry[R]. Annual Review of Energy and Environment, 2001, 26:303-329.
|
93 |
BARCELO L, KLINE J, WALENTA G, et al. Cement and carbon emissions[J]. Materials and Structures, 2014, 47(6): 1055-1065.
|
94 |
IEA, Technology roadmap: Energy and GHG reductions in the chemical industry via catalytic processes[R]. IEA Publications, France, May 2013.
|
95 |
马玉莲, 忻仕海. 碳足迹评价方法学在PVC产品中的应用[J]. 氯碱工业, 2011, 47(1): 1-6, 34.
|
|
MA Yulian, XIN Shihai. Application of carbon footprint assessment methodology on PVC[J]. Chlor-Alkali Industry, 2011, 47(1): 1-6, 34.
|
96 |
沈毅. 典型煤制油技术全生命周期评估的对比与分析[D]. 北京: 华北电力大学, 2015.
|
|
SHEN Yi. Comparison and analysis of typical coal liquefaction technology life cycle assessment[D]. Beijing: North China Electric Power University, 2015.
|
97 |
于涵, 蒋庆哲, 宋昭峥, 等. CO2-DMC产业链碳足迹分析[J]. 现代化工, 2017, 37(3): 9-13.
|
|
YU Han, JIANG Qingzhe, SONG Zhaozheng, et al. Carbon footprint analysis of CO2-DMC industrial chain[J]. Modern Chemical Industry, 2017, 37(3): 9-13.
|
98 |
孙潇磊, 张志智, 尹泽群. 沥青产品的碳足迹研究[J]. 石油炼制与化工, 2017, 48(12): 88-92.
|
|
SUN Xiaolei, ZHANG Zhizhi, YIN Zequn. Study of carbon footprint of asphalt products[J]. Petroleum Processing and Petrochemicals, 2017, 48(12): 88-92.
|
99 |
雷昕儒. 煤气化合成气调制制备甲醇的过程模拟、技术经济分析和生命周期评价[D]. 合肥: 安徽大学, 2020.
|
|
LEI Xinru. Process simulation, economic analysis and life cycle assessment of coal gasification with syngas adjustment for methanol production[D]. Hefei: Anhui University, 2020.
|
100 |
罗仁英. 煤制氢气生命周期碳足迹研究[D]. 北京: 中国石油大学(北京), 2020.
|
|
LUO Renying. Life cycle carbon footprint analysis of hydrogen production from coal[D]. Beijing: China University of Petroleum (Beijing), 2020.
|
101 |
张楚珂, 田涛, 王之茵, 等. 聚丙烯产品碳足迹核算及对比研究[J]. 石油石化绿色低碳, 2021, 6(6): 17-23.
|
|
ZHANG Chuke, TIAN Tao, WANG Zhiyin, et al. The study of carbon footprint calculation and comparison of polypropylene product[J]. Green Petroleum & Petrochemicals, 2021, 6(6): 17-23.
|
102 |
田涛, 姜晔, 李远. 石油化工行业产品碳足迹评价研究现状及应用展望[J]. 石油石化绿色低碳, 2021, 6(1): 66-72.
|
|
TIAN Tao, JIANG Ye, LI Yuan. Research and application status of carbon footprint assessment of petrochemical products[J]. Green Petroleum & Petrochemicals, 2021, 6(1): 66-72.
|
103 |
卜庆佳, 张媛媛, 李俊杰, 等. 天然气/煤制乙二醇路线碳排放与经济分析[J]. 现代化工, 2022, 42(8): 209-214, 219.
|
|
BU Qingjia, ZHANG Yuanyuan, LI Junjie, et al. Analysis on carbon dioxide emission and economy of natural gas to ethylene glycol route and coal to ethylene glycol route[J]. Modern Chemical Industry, 2022, 42(8): 209-214, 219.
|
104 |
赵志仝. 有机化工原料的低碳路线分析[D]. 大连: 大连理工大学, 2020.
|
|
ZHAO Zhitong. The low carbon evaluation of organic chemical products[D]. Dalian: Dalian University of Technology, 2020.
|
105 |
李泉鑫, 李俊杰, 龚先政, 等. 两条不同技术路线的煤制聚丙烯生命周期评价[J]. 煤炭转化, 2022, 45(4): 1-9.
|
|
LI Quanxin, LI Junjie, GONG Xianzheng, et al. Life cycle assessment of coal to polypropylene based on two different routes[J]. Coal Conversion, 2022, 45(4): 1-9.
|
106 |
孟春江. 中国煤化工行业温室气体排放核算研究[D]. 北京: 清华大学, 2014.
|
|
MENG Chunjiang. Research of greenhouse gas emission calculation inventory in coal chemical industry of China[D]. Beijing: Tsinghua University, 2014.
|
107 |
WANG Qi, SPASOVA B, HESSEL V, et al. Methane reforming in a small-scaled plasma reactor-Industrial application of a plasma process from the viewpoint of the environmental profile[J]. Chemical Engineering Journal, 2015, 262: 766-774.
|
108 |
BURMISTRZ P, CHMIELNIAK T, CZEPIRSKI L, et al. Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification[J]. Journal of Cleaner Production, 2016, 139: 858-865.
|
109 |
GARCIA-HERRERO I, MARGALLO M, ONANDÍA R, et al. Environmental challenges of the chlor-alkali production: Seeking answers from a life cycle approach[J]. Science of the Total Environment, 2017, 580: 147-157.
|
110 |
KHOO H H, HALIM I, HANDOKO A D. LCA of electrochemical reduction of CO2 to ethylene[J]. Journal of CO2 Utilization, 2020, 41: 101229.
|
111 |
KUMAR P, VERMA S, GUPTA A, et al. Life cycle analysis for the production of urea through syngas[J]. IOP Conference Series: Earth and Environmental Science, 2021, 795(1): 012031.
|
112 |
GUILERA J, FILIPE M, MONTESÓ A, et al. Carbon footprint of synthetic natural gas through biogas catalytic methanation[J]. Journal of Cleaner Production, 2021, 287: 125020.
|
113 |
KANG D, BYUN J, HAN J. Electrochemical production of formic acid from carbon dioxide: A life cycle assessment study[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106130.
|
114 |
GALLEGO-VILLADA L A, HASENSTAB C, ALARCÓN E A, et al. Identification by life cycle assessment of the critical stage in the catalytic synthesis of nopol using heterogeneous catalysis[J]. Sustainable Production and Consumption, 2021, 27: 23-34.
|
115 |
LIU Zhu, GUAN Dabo, WEI Wei, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565): 335-338.
|
116 |
CHEN Guangwu, SHAN Yuli, HU Yuanchao, et al. Review on city-level carbon accounting[J]. Environmental Science & Technology, 2019, 53(10): 5545-5558.
|
117 |
BABACAN O, DE CAUSMAECKER S, GAMBHIR A, et al. Assessing the feasibility of carbon dioxide mitigation options in terms of energy usage[J]. Nature Energy, 2020, 5(9): 720-728.
|
118 |
ZHANG Qi, XU Jin, WANG Yujie, et al. Comprehensive assessment of energy conservation and CO2 emissions mitigation in China's iron and steel industry based on dynamic material flows[J]. Applied Energy, 2018, 209: 251-265.
|
119 |
GUO Yang, TIAN Jinping, CHEN Lyujun. Managing energy infrastructure to decarbonize industrial parks in China[J]. Nature Communications, 2020, 11: 981.
|
120 |
PETERS G P, ANDREW R M, CANADELL J G, et al. Key indicators to track current progress and future ambition of the Paris Agreement[J]. Nature Climate Change, 2017, 7(2): 118-122.
|