Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (3): 1195-1205.DOI: 10.16085/j.issn.1000-6613.2022-0938
• Chemical processes and equipment • Previous Articles Next Articles
ZHU Tianyu(), SUN Lin(), REN Chao, LUO Xionglin
Received:
2022-05-20
Revised:
2022-06-28
Online:
2023-04-10
Published:
2023-03-15
Contact:
SUN Lin
通讯作者:
孙琳
作者简介:
朱添宇(1998—),男,硕士研究生,研究方向为系统工程。E-mail:15911057786@163.com。
基金资助:
CLC Number:
ZHU Tianyu, SUN Lin, REN Chao, LUO Xionglin. Sliding window analysis and slow-release margin optimal control for heat exchanger networks based on full cycle sustainable energy saving[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1195-1205.
朱添宇, 孙琳, 任超, 罗雄麟. 基于全周期持续节能的换热网络滑动窗口分析与裕量缓释优化控制[J]. 化工进展, 2023, 42(3): 1195-1205.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0938
物流名称 | 缩写 | 流量 /kg·s-1 | 热容 /kW | 输入温度 /℃ | 输出温度 /℃ |
---|---|---|---|---|---|
常顶油 | LAGO | 3.93 | 3613 | 114 | 86 |
常二线 | MAGO | 12.74 | 2670 | 200 | 118 |
常三线 | HAGO | 10.16 | 2701 | 230 | 120 |
减一中 | LVCO | 8.31 | 1261 | 174 | 110 |
减二线 | MVGO | 18.34 | 4338 | 222 | 116 |
减三线 | HVGO | 4.24 | 902 | 218 | 122.5 |
减底渣油(1) | VR(1) | 27.36 | 6742 | 227.5 | 124 |
减底渣油(2) | VR(2) | 27.36 | 5622 | 205 | 120.5 |
原油 | CRUDE | 60.95 | 2.8×104 | 55 | 162 |
物流名称 | 缩写 | 流量 /kg·s-1 | 热容 /kW | 输入温度 /℃ | 输出温度 /℃ |
---|---|---|---|---|---|
常顶油 | LAGO | 3.93 | 3613 | 114 | 86 |
常二线 | MAGO | 12.74 | 2670 | 200 | 118 |
常三线 | HAGO | 10.16 | 2701 | 230 | 120 |
减一中 | LVCO | 8.31 | 1261 | 174 | 110 |
减二线 | MVGO | 18.34 | 4338 | 222 | 116 |
减三线 | HVGO | 4.24 | 902 | 218 | 122.5 |
减底渣油(1) | VR(1) | 27.36 | 6742 | 227.5 | 124 |
减底渣油(2) | VR(2) | 27.36 | 5622 | 205 | 120.5 |
原油 | CRUDE | 60.95 | 2.8×104 | 55 | 162 |
时间/月 | 缓释优化/℃ | 时间/月 | PID/℃ |
---|---|---|---|
1~5 | 166.80 | 1~5 | 166.80 |
6~10 | 165.50 | 6~10 | 165.50 |
11~15 | 164.30 | 11~15 | 164.30 |
16~21 | 162.80 | 16~21 | 162.80 |
22~29 | 162.00 | 22~24 | 162.00 |
30~36 | 160.50 | 25~28 | 161.00 |
— | — | 29~31 | 160.40 |
时间/月 | 缓释优化/℃ | 时间/月 | PID/℃ |
---|---|---|---|
1~5 | 166.80 | 1~5 | 166.80 |
6~10 | 165.50 | 6~10 | 165.50 |
11~15 | 164.30 | 11~15 | 164.30 |
16~21 | 162.80 | 16~21 | 162.80 |
22~29 | 162.00 | 22~24 | 162.00 |
30~36 | 160.50 | 25~28 | 161.00 |
— | — | 29~31 | 160.40 |
1 | YUAN Fang, CHEN Qun. Two energy conservation principles in convective heat transfer optimization[J]. Energy, 2011, 36(9): 5476-5485. |
2 | CHEN Qun, WANG Moran, PAN Ning, et al. Optimization principles for convective heat transfer[J]. Energy, 2009, 34(9): 1199-1206. |
3 | HAMEDI H, KARIMI I A, GUNDERSEN T. Simulation-based approach for integrating work within heat exchange networks for sub-ambient processes[J]. Energy Conversion and Management, 2020, 203: 112276. |
4 | 蒋立本, 冯霄, 丁生华, 等. 受网络夹点控制的装置的改造分析[J]. 高校化学工程学报, 2001, 15(2): 161-166. |
JIANG Liben, FENG Xiao, DING Shenghua, et al. Analysis of retrofitting the process controlled by network pinch[J]. Journal of Chemical Engineering of Chinese Universities, 2001, 15(2): 161-166. | |
5 | 陈鹏鹏, 李继龙, 樊婕, 等. 考虑污垢增长的柔性换热器网络综合[J]. 华东理工大学学报(自然科学版), 2013, 39(1): 51-54, 60. |
CHEN Pengpeng, LI Jilong, FAN Jie, et al. Synthesis of flexible heat exchanger network with fouling growth[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2013, 39(1): 51-54, 60. | |
6 | LUGO-GRANADOS H, PICÓN NÚÑEZ M. Modelling scaling growth in heat transfer surfaces and its application on the design of heat exchangers[J]. Energy, 2018, 160: 845-854. |
7 | ZHENG K, LOU H H, WANG J, et al. A method for flexible heat exchanger network design under severe operation uncertainty[J]. Chemical Engineering & Technology, 2013, 36(5): 757-765. |
8 | KONUKMAN A E Ş, AKMAN U, ÇAMURDAN M C. Optimal design of controllable heat-exchanger networks under multi-directional resiliency-target constraints[J]. Computers & Chemical Engineering, 1995, 19: 149-154. |
9 | WANG L K, SUNDÉN B. Detailed simulation of heat exchanger networks for flexibility consideration[J]. Applied Thermal Engineering, 2001, 21(12): 1175-1184. |
10 | SHILLING R L, RUDY M P, RUDY T M. Risk-based design margin selection for heat exchangers[J]. Heat Transfer Engineering, 2011, 32(3/4): 307-313. |
11 | SHILLING R L. Fouling and uncertainty margins in tubular heat exchanger design: an alternative[J]. Heat Transfer Engineering, 2012, 33(13): 1094-1104. |
12 | ERNST P, FIEG G, LUO X. Efficient synthesis of large-scale heat exchanger networks using monogenetic algorithm[J]. Heat and Mass Transfer, 2010, 46(10): 1087-1096. |
13 | 夏车奎, 罗雄麟, 孙琳. 基于全周期节能的有旁路换热网络裕量优化设计[J].化工学报, 2012, 63(5): 1449-1458. |
XIA Chekui, LUO Xionglin, SUN Lin. Margin optimal design of heat exchanger network with bypasses based on life cycle energy saving[J]. CIESC Journal, 2012, 63(5): 1449-1458. | |
14 | 倪锦, 崔国民, 姜慧, 等. 换热网络的柔性识别及基于旁路调节的运行优化[J]. 化工进展, 2010, 29(1): 17-24. |
NI Jin, CUI Guomin, JIANG Hui, et al. Flexibility identification and operation optimization based on by-pass adjustment of heat exchanger networks[J]. Chemical Industry and Engineering Progress, 2010, 29(1): 17-24. | |
15 | 汪旭, 冯霄. 基于启发式方法的弹性换热网络的合成[J]. 计算机与应用化学, 2010, 27(10): 1349-1352. |
WANG Xu, FENG Xiao. Synthesis of flexible heat exchanger network based on heuristic approach[J]. Computers and Applied Chemistry, 2010, 27(10): 1349-1352. | |
16 | MARSELLE D F, MORARI M, RUDD D F. Design of resilient processing plants (II): Design and control of energy management systems[J]. Chemical Engineering Science, 1982, 37(2): 259-270. |
17 | MATHISEN K W, SKOGESTAD S, WOLFF E A. Bypass selection for control of heat exchanger networks[J]. Computers & Chemical Engineering, 1992, 16: S263-S272. |
18 | UZTÜRK D, AKMAN U. Centralized and decentralized control of retrofit heat-exchanger networks[J]. Computers & Chemical Engineering, 1997, 21: S373-S378. |
19 | ARBAOUI M, HASSIMI L V, SEGUIN D, et al. Counter-current tubular heat exchanger: Modeling and adaptive predictive functional control[J]. Applied Thermal Engineering, 2007, 27: 2332-2338. |
20 | LUYBEN W L. Heat-exchanger bypass control[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 965-973. |
21 | DELATORE F, NOVAZZI L F, LEONARDI F, et al. Multivariable optimal control of a heat exchanger network with bypasses[J]. Brazilian Journal of Chemical Engineering, 2016, 33(1): 133-143. |
22 | HERNÁNDEZ S, BALCAZAR-LÓPEZ L, SÁNCHEZ-MÁRQUEZ J A, et al. Controllability and operability analysis of heat exchanger networks including bypasses[J]. Chemical and Biochemical Engineering Quarterly, 2010, 24(1): 23-28. |
23 | 张少凤, 张清勇, 杨叶森, 等. 基于滑动窗口和LSTM神经网络的锂离子电池建模方法[J]. 储能科学与技术, 2022, 11(1): 228-239. |
ZHANG Shaofeng, ZHANG Qingyong, YANG Yesen, et al. Lithium-ion battery model based on sliding window and long short term memory neural network[J]. Energy Storage Science and Technology, 2022, 11(1): 228-239. | |
24 | 杨世强, 罗晓宇, 乔丹, 等. 基于滑动窗口和动态规划的连续动作分割与识别[J]. 计算机应用, 2019, 39(2): 348-353. |
YANG Shiqiang, LUO Xiaoyu, QIAO Dan, et al. Continuous action segmentation and recognition based on sliding window and dynamic programming[J]. Journal of Computer Applications, 2019, 39(2): 348-353. | |
25 | 刘俊扬, 张仲荣, 祁楌捷. 基于滑动窗口和LSTM的PM2.5浓度预测模型[J]. 齐齐哈尔大学学报(自然科学版), 2022, 38(1): 87-94. |
LIU Junyang, ZHANG Zhongrong, QI Yanjie. PM2.5 concentration prediction model based on sliding window and LSTM[J]. Journal of Qiqihar University (Natural Science Edition), 2022, 38(1): 87-94. | |
26 | 徐江, 张鸿宇, 李军怀, 等. 基于滑动窗口的流数据并行处理方法[J]. 重型机械, 2021(1): 29-36. |
XU Jiang, ZHANG Hongyu, LI Junhuai, et al. Parallel processing method of steam data based on sliding window[J]. Heavy Machinery, 2021(1): 29-36. | |
27 | SUN Lin, ZHA Xinlang, LUO Xionglin. Coordination between bypass control and economic optimization for heat exchanger network[J]. Energy, 2018, 160: 318-329. |
28 | 缪应锋, 姚庆华, 李智雄, 等. 基于梯度估计的非线性系统最优控制及仿真[J]. 计算机系统应用, 2016, 25(11): 260-264. |
MIAO Yingfeng, YAO Qinghua, LI Zhixiong, et al. Optimal control and simulation of nonlinear systems based on gradient estimation[J]. Computer Systems & Applications, 2016, 25(11): 260-264. | |
29 | 任超, 孙琳, 罗雄麟. 换热器因应结垢慢时变的控制系统重构分析[J]. 化工学报, 2021, 72(10): 5273-5283. |
REN Chao, SUN Lin, LUO Xionglin. Analysis on the reconfiguration of the control system of the heat exchanger in response to the slow and time-varying fouling[J]. CIESC Journal, 2021, 72(10): 5273-5283. | |
30 | 杨辉, 邱亦丰, 李宁, 等. 通用型阀门控制器研究与应用[Z]. 陕西煤业化工集团有限责任公司, 2016-08-19. |
YANG Hui, QIU Yifeng, LI Ning, et al. Research and application of universal valve controller[Z]. Shaanxi coal and Chemical Industry Group Co., Ltd., 2016-08-19. |
[1] | JIANG Ning, ZHANG Yuanyi, FAN Wei, ZHAO Shichao, XU Xinjie, XU Yingjie. Cleaning decision of heat exchanger network based on intelligent prediction and mechanism [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1781-1792. |
[2] | XU Yue, CUI Guomin. Analyzing optimization performance of heat exchanger network synthesis based on nodes' adjustment strategy [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3608-3616. |
[3] | Yingdi SHAO, Jianhang HU, Huili LIU, Zhengda CAI. Energy efficiency analysis of heat exchange network of isobutylene purification unit [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 57-65. |
[4] | Ning JIANG, Wei FAN, Xiaodong XIE, Fengyuan GUO, Enteng LI, Shichao ZHAO. Comparative study of NSGA-Ⅱ and NSGA-Ⅲ on multi-objective optimization of heat exchanger network [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2534-2547. |
[5] | Geman SU, Guomin CUI, Yuan XIAO, Qianqian ZHAO. Influence analysis and strategy improvement of heat exchanger generation frequency in heat exchanger networks optimization [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3879-3891. |
[6] | Chang LIU,Shiyu LI,Xiaolan XIE. Integration of heat storage in batch processes considering additional approach temperature difference for indirect heat transfer [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 72-79. |
[7] | Geman SU,Guomin CUI,Zhongkai BAO,Yuan XIAO,Aowei JIANG. Influence analysis and enhancement strategy of infeasible solutions for heat exchanger network optimization with RWCE [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 14-25. |
[8] | Ning JIANG,Xiaodong XIE,Wei FAN,Yingjie XU. Data-driven optimization retrofit method with fixed topology structure for heat exchanger network [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4452-4460. |
[9] | Yunqing DONG, Zheng WANG, Yifan XU, Yanxia YANG, Xiaoping JIA, Fang WANG. Heat exchanger network bypass position determination based on complex network control theory [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3046-3055. |
[10] | Ning JIANG, Fengyuan GUO, Wenqiao HAN, Huajing LIU, Lu LIN. 3E Optimization of heat exchanger network system based on non-counterflow heat transfer [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 761-771. |
[11] | JIANG Ning, HAN Wenqiao, GUO Fengyuan, XU Yingjie. Optimization of heat exchanger network retrofit based on actual heat load distribution [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 2935-2941. |
[12] | DENG Weidong, CUI Guomin, CHEN Jiaxing, ZHU Yushuang. Heat exchange network optimization by inverse gradient evolution strategy with penalty [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2500-2509. |
[13] | ZHANG Hongliang, CUI Guomin, ZHU Yushuang, HUANG Xiaohuang. Optimization and analysis of specific heat exchanger network cases [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1692-1701. |
[14] | XIAO Wu, SHI Zhaoxia, JIANG Xiaobin, LI Xiangcun, WU Xuemei, HE Gaohong, LUO Li. Research progress on heat exchanger network considering heat transfer enhancement of shell-and-tube exchangers [J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1267-1275. |
[15] | FENG Yuanli, XIA Li, XIANG Shuguang. Comparative study on heat exchanger network adaptability based on entropy analysis and entransy analysis [J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3657-3664. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |